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Anisotropic turbulence
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Coriolis force with parameter

f = 2Ω sin φ
Buoyancy b due to density gradient

with N ,

the Brunt-Vaisala frequency

Simplifications :
Uniform vertical solid body rotation
Constant vertical density gradient

⇒ Anisotropic
homogeneous turbulence
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Boussinesq approximation

Incompressible Navier-Stokes with buoyancy forcing in a rotating frame of reference

∂u

∂t
−

1

Re
∇2u = −∇(p∗ +

1

2
u2) + u ×∇× u−f n3 × u+bn3

∇ · u = 0

Equation for buoyancy

∂b

∂t
− κ∇2b = −(u · ∇)b−N2(n3 · u)

Anisotropic turbulence and orthogonal wavelets
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Direct numerical simulation

– Standard Pseudo-spectral collocation method with a Fourier base

– Periodic cubic domain

– Fully dealiased using a 2/3-rule

– Adams-Bashforth 3rd-order timestepping

– No forcing – freely decaying

– Precalculation to develop higher order velocity correlations

– Fully isotropic initial conditions for kinetic and potential energy

– High resolution calculations, so using NEC-SX from IDRIS and CEA

Rλ ≈ 100 Ro = u
fL ≈ 0.01 Fr = u

NL ≈ 0.01

α = f
N

STRATIFIED ROTATING-
0 1 ∞

Anisotropic turbulence and orthogonal wavelets
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Homogeneous rotating and stratified turbulence

Isovorticity surfaces at one instant in time. Colours represent vertical velocity.

?g

6Ω

STRATIFIED ROTATING
PANCAKES CIGARS

Typical anisotropic vel. distr. and development of coherent structures with aniso. aspect

ratios. Also statistics are anisotropic (see e.g. vel. corr. length scales JOT 6, Nr.24).

Presence of “vortical” turbulence and internal “waves”.
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Linear Boussinesq approximation in Fourier space

Transformation of variables :

(û1, û2, û3) —> (v̂(1), v̂(2))

i
N b —> v̂(3)

Toroidal

Poloidal

Potential

Craya-Herring frame of reference

e1
k

e2

e3

Leading to a linear system of equations, where σr = f cos θ and σs = N sin θ :

∂t









v̂(1)

v̂(2)

iv̂(3)









+









0 −σr 0

σr 0 −σs

0 σs 0,

















v̂(1)

v̂(2)

iv̂(3)









= 0
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Iso-vorticity surfaces of rotating and stratified turbulence

N = 5π f = π
Isosurface at |ω| = 3 ∗ σ where σ is the Standard deviation of ω.

One time instant with
Resolution :

n3 = 5123

Time of analysis :

TL = tu/L = 9.2
which corresponds to
5 inertial turnover times or
25 Brunt-Vaisälä oscillation times

Anisotropic turbulence and orthogonal wavelets
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Comparison to isotropic turbulence

Kinetic Energy : E = 0.0139
at TL = 9.2

E = 0.0142 at TL = 2.8

Anisotropic turbulence and orthogonal wavelets
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Coherent Vortex Extraction

Wavelets : A multi-resolution analysis Farge, Schneider, Kevlahan, 1999

“position and scale”
Farge, Pellegrino, Schneider, 2001

– Vorticity ω = ∇× v at resolution n = 23J

– Wavelet transform ω̃ = 〈ω, ψλ〉

– Thresholding : T = (4/3Z lnn)1/2 where Z is the Enstrophy

ω̃C =







ω̃ for |ω̃| ≥ T,

0 for |ω̃| < T
ω̃I =







ω̃ for |~̃ω| < T,

0 for |~̃ω| ≥ T
(1)

– Inverse wavelet transform to reconstruct ωC + ωI = ω

– Apply Biot-Savart operator to reconstruct vC + vI = v

with v = ∇×∇−2ω

– Remark : Z = ZC + ZI (orth. dec.) and E ≈ EC + EI

Anisotropic turbulence and orthogonal wavelets
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Iso-vorticity surfaces of coherent and incoherent parts

Total vorticity : 100%n3 contain 100%Z

|ω| = 3σ

Coherent vort. : 1%n3 contain 99.9%Z

|ω| = 3σ

Incoherent vort : 99%n3 contain 0.1%Z

|ω| = 0.2σ

Anisotropic turbulence and orthogonal wavelets
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Half-time Conclusions

Anisotropic turbulence :

– Flow field develops anisotropic structures and anisotropic statistics.

– Rotating and stratified turbulence is a “two-mode” flow, composed of a vortical motion

and internal waves.

– Modelisation is difficult, due to combined linear/nonlinear mechanisms and anisotropy

in the flow (large linear oscillations with a slow nonlinear evolution)

Coherent vortex extraction of anisotropic turbulence :

– Coherent part contains all of the enstrophy with only 1% of wavelet coefficients.

– Compression rate is much better for anisotropic turbulence than for isotropic

turbulence (≈ 5% contain ≈ 90% of enstrophy), despite a higher Rλ in anisotropic

turbulence.

Which way do we continue ? Directional wavelet analysis.

Anisotropic turbulence and orthogonal waveletsAnisotropic turbulence and orthogonal wavelets
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Turbulence and spherically averaged spectra
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Turbulence and spherically averaged spectra
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What about wavelet space ?

FOURIER SPACE

S
T
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?
g

6Ω

REAL SPACE

WAVELET SPACE

Good localisation in space

Information about scale

Directional information for anisotropy

Orthogonal wavelets :

Orthogonal basis functions

Scale dependent spatial resolution

Basis functions in 7 different directions

Anisotropic turbulence and orthogonal wavelets
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Directionality in orthogonal wavelet coefficients
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x

Orthogonal wavelet filtering :
Scaling filter φ and wavelet filter ψ

⇒
Mallat-

Repres.

3 directions for 2-dimensional signals :
Directional information can be extracted.

Gradient in a direction means strong wavelet coefficients for that direction
(Wavelet coefficients)2 proportional to energy

Anisotropic turbulence and orthogonal wavelets
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3-D wavelet coefficients of rotating turbulence

Mallat representation of wavelet-coefficients of x-component of vorticity, i.e. ω̃x
Wavelet coefficients of z-component ω̃z are superposed by color.

Anisotropic turbulence and orthogonal wavelets
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Rotating turbulence in wavelet space

Nearly 3/4 of wavelet space is empty
(vertical direction ψz)

Density in ’transversal direction’
is higher (e.g. ψy for ω̃x)

Large scales more isotropic than small scales

⇒ Statistics in wavelet space

Coefficient density ∝ Energy density ⇒ Directional Spectra

Anisotropic turbulence and orthogonal wavelets
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Directional wavelet spectra of rotating turbulence
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Directional wavelet spectra of rotating turbulence
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Directional wavelet spectra of rotating turbulence
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What is directional energy ?

Strong coefficients are found where strong
“changes” are present in a direction

⇒
Direct.

sum

Σ (coeffs)2 for one direction measures
the energy of the signal in that direction.

Directional energy compares the importance of different directions.
For a vector field, longitudinal and transversal energies can be defined.

Anisotropic turbulence and orthogonal wavelets
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Mallat representation of wavelet space

Scales in x−direction

Each box corresponds to a certain scale j and direction.

Each box contains 22(j−1) values, giving information on localization in physical space.
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Wavelet space vs. Fourier space 2D

Scales in x−direction

Ky

Kx

Hereby we can relate a scale j to a wavenumber Kj : Kj = K02
j
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Wavelet space vs. Fourier space 3D

K

Kx

y

Kz

Example : velocity field.

The energy in the red domain corresponds to horizontal velocity fluctuations
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Directional Energy GWN
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Directional Energy DFGWN
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Directional Energy Isotropic Turbulence
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Directional Energy Rotating Turbulence
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Directional Energy Stratified Turbulence
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Directional energy distributed over scales : spectra ..
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Directional energy distributed over scales : spectra

 0

 5

 10

 15

 20

zyx

%
 o

f E
ne

rg
y

Directions

u
v
w

10-9

10-8

10-7

10-6

10-5

10-4

10-3

100 101 102

K

Euu(Kx)
Evv(Kx)

Eww(Kx)

One looses some spectral resolution...

.. but obtains standard deviation of the spectral distribution

σE(Kj) ∼
[

e(Kj)2 − e(Kj)
2
]1/2

with e(Kj) = ũ(x, j)2
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Relation standard deviation and Flatness

Flatness :
Fu(Kj) =

ũ(Kj)4

ũ(Kj)2
2

and standard deviation of the spectral distribution

σe(K
j) =

[

e(Kj)2 − e(Kj)
2
]1/2

σe(K
j) =

[

(Fu(Kj) − 1)
]1/2

e(Kj)

→ Fu(Kj) =

(

σE(Kj)

e(Kj)

)2

+ 1

Flatness is related to relative variance of the spectra
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Directional Flatness
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Directional Flatness
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Directional Flatness
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Directional Flatness
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Physics ?

– The Kz direction corresponds to the vortex mode in stratified turbulence

– It seems that this mode behaves “isotropically” when considering flatness

– The wavemode yields a dramatical increase of flatness in the small scales

Conjecture : the wavemode is responsible for intermittency and rare events in

stratified turbulence
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Conclusions

– Compared to non-structured energy distributions, turbulence prefers ’transversal’

energy (vortical structure). Average direction of vortices can be determined by

directional energies.

– Anisotropic turbulence has non-zero coefficients in real space and Fourier space.

However, the majority of the coefficients are very small in wavelet space, suggesting

possibilities for models.

Perspectives

– Parametrisation of anisotropy (N and f ) in wavelet space.

– Extenstion to Magneto-hydrodynamics.

– Coherent-vortex-simulation of anisotropic turbulence using 1% of the wavelet

coefficients..
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http://www.l3m.univ-mrs.fr/site/schneider.htm

Anisotropic turbulence and orthogonal wavelets

Ref.: L. Liechtenstein, W. Bos and K. Schneider.
Anisotropy and spatial intermittency in rotating and stratified turbulence.
Preprint, 03/2007.
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