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The Navier-Stokes

The Navier-Stokes equations 

unknowns:

initial condition

boundary condition

forcing

- is the velocity field

- is the pressure

Incompressibilitycondition

- is the viscosity

cylinder

or periodic boundary condition 



The Navier-Stokes Equations
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Sobolev Spaces

})1(ˆ

such that 

ˆ{)(

22

2

∞<+

==Ω

∑

∑

∈

∈

⋅

s

k
k

k

L
xki

k
s

k

eH
d

r

r
r

r

rr

r

dZ

Z

ϕ

ϕϕ
π



By Poincare’ inequality
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Theorem (Leray 1932-34)
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For every            there exists a weak solution 
(in the sense of distribution) of the  
Navier-stokes equations, which also satisfies

0>Τ

The uniqueness of weak solutions in the three
dimensional Navier-Stokes equations case is 
still an open question.



Strong Solutions of Navier-Stokes
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Formal Enstrophy Estimates
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Observe that

By  Cauchy-Schwarz

By Hőlder inequality
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The Two-dimensional Case

Global regularity of strong solutions to the 
two-dimensional Navier-Stokes equations.



Navier-Stokes Equations

• Two-dimensional Case

* Global Existence and Uniqueness 
of weak and strong solutions

* Finite dimension global attractor



One can instead use the following Sobolev inequality
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Navier-Stokes Equations

• The Three-dimensional Case
* Global existence of the weak solutions
* Short time existence of the strong solutions
* Uniqueness of the strong solutions

• Open Problems:
* Uniqueness of the weak solution
* Global existence of the strong solution.



Vorticity Formulation
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Satisfies a maximum principle.
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The Three-dimensional Case

Potential “Blow Up”!!
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For large initial data         the vorticity balance takes 
the form



Special Results of Global Existence for 
the three-dimensional Navier-Stokes
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axis]- from[away 
axis- thearoundDomain Revolution
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• Let us move to Cylindrical coordinates

Theorem   (Ladyzhenskaya) Let 

be axi-symmetric initial data. Then the three-dimensional 
Navier-Stokes equations have globally (in time) strong solution 
corresponding to such initial data. Moreover, such strong solution
remains axi-symmetric. 



Theorem (Leiboviz,  Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes 
equations in an infinite Pipe. Let
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(Helical symmetry). For such initial data we have 
global existence and uniqueness. Moreover, 
such a solution remains  helically symmetric.



Remarks

• For axi-symmetric and helical flows the vorticity
stretching term is nontrivial, and the velocity 
field is three-dimensional.

• In the inviscid case, i.e.          , the question of 
global regularity of the three-dimensional helical  
or axi-symmetrical Euler equations is still open. 
Except the invariant sub-spaces where the 
vorticity stretching term is trivial. 

0=υ



• Theorem [Cannone, Meyer & Planchon] 
[Bondarevsky] 1996

Let M be given, as large as we want. Then there exists 
K(M) such that for every initial data of the form 
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the three-dimensional Navier-Stokes equations have global 
existence of strong solutions.

[VERY OSCILLATORY]

Remark Such initial data satisfies 

So, this is a particular case of Kato’s Theorem.
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The Effect of Rotation
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●If           is decreasing function on some subinterval 
of R then the solution of the above equation develops 
a singularity (Shock) in finite time.

The solution is given implicitly by the relation:
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An Illustrative  Example



The Effect of the Rotation
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The above complex system is 
equivalent to 2D Rotating Burgers:



Reynolds Equations

- mean

- fluctuations around the mean



Averaged Equations of Motion

NSE

1

2

3

4

Reynolds averaged Navier-Stokes Equations

Incompressibility condition



Closure Problem

Reynolds averaged Navier-Stokes Equations

Incompressibility condition

Fundamental Problem in Turbulence – The Closure Problem

(equations are not closed:  more unknowns than equations)



Turbulence Modeling

How to 
model this in 
terms of     ?

Reynolds averaged Navier-Stokes Equations

Incompressibility 
condition

How to close the Reynolds averaged system?



Large Eddy Simulations

• Spatial Filtering
• Large Eddy Simulations
• Sub-grid Scale Model

Let         be nice/smooth spatial filter/kernel

Here again the problem is to model:

and close the system in terms of 



Smogarinsky Model



Navier-Stokes-α

• S. Chen
• C. Foias
• D. Holm
• E. Olson
• S. Wynne
• E. S. Titi



Camassa-Holm Water Wave Equation

Camassa-Holm Water Wave Equation

Hamiltonian



Inviscid Equations

Euler equations

Hamiltonian

Euler-α equations (Holm-Ratiu-Marsden)

Hamiltonian



Euler-α (Inviscid Second-Grade Fluid)

Or Equivalently



Euler-α (inviscid second grade fluid)

or Equivalently

−º∆u

3D (no global well-posedness)
Euler equations  when α=0

0

0

37



Navier-Stokes-α (The viscous Camassa-Holm equations)



The steady state Navier-Stokes-alpha analytic subgrid scale model of turbulence

Reynolds averaged Navier-Stokes Equations

where

Chen, Foias, Holm, Olson, Titi and Wynne, Physics of Fluids 1999

The Navier-Stokes-α as a closure model

39



Vorticity Formulation



Dimension of Global Attractor (NS-α) 



Turbulent Channel Flow

y

x

z



Reynolds Averaged Equations

Facts:



Reynolds Stresses

The Reynold stresses 

are functions of z alone.

Reynolds Equations



Steady VCHE 

ansatz

Steady VCHE Reynolds equations



Identifying Terms in VCHE & Reynolds equations

The General Solution of VCHE



Physical Parameters

• Boundary Stress

• Averaged Streamwise Velocity Across the Channel

• Reynolds Numbers

• Length Scales

wall unit



Normalized quantities

Let  normalized distance
from the wall

normalized velocity profile



Drag Law

The drag law for the wall friction



Profile

The Profile        depends on:

Blasius drag law



Figure 1 and Figure 2



Figure 3 



Figure 4

• Experimental data from:
T. Wei and W.W. Willmarth

• Having blasius drag law
λ = 0.06



Figure 5 

• Experimental data from:
T. Wei and W.W. Willmarth

• DNS  Kim, Moin & Moser
• Having blasius drag law

λ = 0.06



Figure 6

• Experimental data from:
T. Wei and W.W. Willmarth

• Having blasius drag law
λ = 0.06



Figure 7 and Figure 8

• Experimental data from:
T. Wei and W.W. Willmarth

• DNS  Kim, Moin & Moser
• Having blasius drag law

λ = 0.06



Room for Improvement

Near the boundary

-- is a function of the distance from the boundary

-- constant away from the boundary



First Attempt:

viscous layer

z



Figure 9 and Figure 10

d− d0
d

= [:97; :991; :993; :997]

Á(R0) = Ám ax

D = :06R−1=4Blasius Drag Law

Using as input



Figure 11 and Figure 12



Figure 15 and Figure 16



Figure 17 



Figure 18



Energy Spectrum



Energy Spectrum (NS-α)
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The Navier-Stokes-alpha subgrid scale model of turbulence

Making the 
nonlinearity milder

Turns into a 
complete gradient

under the channel 
and pipe 
symmetry

The smallest eddy scale 

still participating actively 

in the evolution of the flow

Lagrangian-Averaged 

Navier-Stokes- α (alpha) model

(LANS-α) or

viscous Camassa-Holm equations (VCHE)

original velocity

as α→0  we recover NSE

Inviscid equation – introduced 
by 

Holm, Marsden and Ratiu

(Phys. Rev. Let. 1998), called 

Lagrangian-Averaged Euler - α

(No global well-posedness.)

Foias, Holm, Titi (J. Dyn. Diff. Eqns. 2001)

66



Leray-α Model

NS-α

Cheskidov, Holm, Olson, Titi (Royal Soc. A, MPES 2005)

The Leray-alpha analytic subgrid scale model of turbulence

Aside: Leray Acta Math. 1934 – Regularized NSE

- the Green’s function associated with 



Dimension of Global Attractor (Leray-α) 



Energy Spectrum (Leray-α)
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Clark-α Model

C. Cao, D. Holm and E.S.T., Jour. Of Turbulence, 6 (2005)

Global Existence and Uniqueness

Attractors dimension and Energy Sepctrum like Navier-Stokes-alpha

The Clark-alpha subgrid scale model of turbulence



ML-α Model

The Modified-Leray-alpha subgrid scale model of turbulence

A. Ilyin, E. Lunasin and E.S.T., Journ. Nonlinear Science, 19, (2006)

Global Existence and Uniqueness

Attractor’s dimension and Energy Spectrum like Navier-Stokes-alpha



Simplified Bardina Model

Simplified Bardina turbulence model

Y. Cao, E. Lunasin, and E.S.T, Comm. Math Sci. 4, (2006)  



Simplified Bardina turbulence model

Y. Cao, E. Lunasin, E.S. Titi (CMS 2006)

The Navier-Stokes equations

Reynolds Average Navier-Stokes1980 Bardina

2003 Layton,
Lewandowski

(no global well-posedness)



Simplified Bardina Model

Improvement from Layton and Lewandowski (2003)

initial data:

weak solution:



Your Text hereYour Text here

Continuous 
dependence
on initial data

Global existence 
and uniqueness

Existence of 
global attractor

with finite 
fractal and Hausdorff

dimensionConvergence to NSE 

(in the appropriate sense) 
as the parameter α→ 0

The mathematical theory of simplified Bardina
is complete

Excellent match with experimental data Energy spectra

Simplified Bardina turbulence model

Y. Cao, E. Lunasin, E.S. Titi (CMS 2006)



Inviscid Simplified Bardina Model

This result has important application in computational fluid dynamics when the inviscid
model is considered as a regularizing model of the 3D Euler equations.  

Also note that the inviscid simplified Bardina model is a globally well-posed model 
approximating the Euler equations without adding hyperviscous regularizing term.

Y. Cao, E. Lunasin, E.S.T., Communications in Math. Sciences, 4 (2006)

X



The Navier-Stokes-Voight Model

This is a global regularization of the three-dimensional Navier-Stokes.

This regularization works also in the case of no-slip Dirichlet Boundary 
conditions. 



Navier-Stokes-Voight equations

Introduced by Oskolkov (1973) as a model of motion of linear,viscoelastic fluids.
Models dynamics of Kelvin-Voight viscoelastic incompressible fluids.

Global attractors, estimates of the number of determining modes
by V. Kalantarov and E.S.Titi (preprint)

Inspired by the inviscid simplified Bardina model, we propose



Inviscid Regularization of the 
Surface Quasi-Geostrophic

( ) θ

θθθα
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This inviscid regularization retains the maximum principle.

B. Khouider and E.S. Titi, Communications Pure Applied Math. (2007)



Energy Spectra for Navier-Stokes

S. Kurien
E. M.  Lunasin
M. Taylor
E. S. Titi



NS-alpha vorticity formulation

un-smoothed velocity field
smoothed velocity field

enstrophy
conserved

vorticity

NS-alpha

energy 
conserved

Don’t forget

In 2d NS-α the conserved
“energy” and “enstrophy” are as follows

Observation:

Recall that we have two kinds of velocity

(º = 0 and f = 0)
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Energy Spectrum of Two-Dimensional Navier-Stokes equations



Analytical Result 2: Power laws 
for the 2D NS-α

Proof:  LKTT (2007, JOT):
a. Split the flow into 3 

wavenumber ranges :
[1,k), [k,2k), [2k,∞)
Assume      kf < k

b. Define the energy of an 
eddy of size 1/k as:

c. Enstrophy balance for eddy 
of size 1/k:  
where Zk
represents the net amount 
of enstrophy per unit time 
transferred into 
wavenumbers larger than 
k.

d. Candidates for 
averaged velocity:

Don’t forget



Therefore we get the following 3 
characteristic timescales:

Dissipation rate:

Hence,

Main Result: The kinetic energy 
spectrum for the variable u is:



Otherk-7 Need to check 
numerically

k-5.6

k-6.3
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Establish two power laws in the enstrophy inertial 
subrange range numerically.

Verify the semi-rigorous arguments.
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What has been done in 3D NS-α?

α= 0

α = 1/8 

α = 1/32

256^3

Inertial range

Also by Mohseni, Kosovic, Shkoller and J. Marsden (2003 Phys. Fluids)

Large scale dynamics of the flow is captured by the NS-α eqautions.



What has been done in 2D NS-α?

B. Nadiga and S. Shkoller (2001 Phys. Fluids) –
inverse energy inertial range.  

Power law prediction for k > kα in the forward enstrophy cascade
regime → k-5.6 (not enough resolution to verify).
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Figure 1. Energy spectra for a 2562

simulation with fixed  viscosity and 
varying hypoviscosity coefficient μ. 

The wavenumber k  is in multiples of 2 π. 
The solid lines are the DNS α=0 
calculations of E(k). 

The dotted lines are the NS-α model  
calculations of Eu(k) for small α. 

The behaviour of the spectra is  largely 
independent of the magnitude of the 
hypoviscosity in the  enstrophy cascade 
subrange (6 < k < 15). 

The inset shows the  spectra 
compensated by k4.5. 

The resolution of this simulation is far to 
small to observe the expected scaling 
exponent.



Take the limit α→∞

Scale (to prevent trivial dynamics) 
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Figure 2. Energy spectra for 10242

simulation. 

The black curve is  the DNS (α = 0) which 
shows close to k-3 scaling in the enstrophy
cascade range 6 < k < 20. 

The solid red curve is the Eu(k) spectrum 
as α→∞ which scales close to k-7 in the 
enstrophy cascade range 6< k < 25. 

The energy spectra for intermediate 
values of α tend to the α→∞ limit as α
increases. 

The inset shows the DNS energy 
spectrum (black) compensated by k3.7 and 
the α→∞ energy spectrum (red) 
compensated by k7.4

10242 simulation:  Why NS-∞ equations?
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Figure 3. Energy spectra for 20482

simulation. 

The wavenumber is in multiples of 2π. 

The black curve is the energy spectrum of 
the DNS which shows close to k-3 scaling 
in the enstrophy cascade  range 6<k<35.

The solid red curve is the Eu(k) spectrum 
as  α→∞ which scales approximately as 
k-7.1 in the wavenumber region 6<k<25. 

The inset shows the DNS energy 
spectrum (black) compensated by k3.5 and 
the α→∞ energy spectrum (red) 
compensated by k7.1

20482

Comparing energy spectra for different values of α
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Figure 4. Energy spectra for 40962

simulation. 

The black curve is the spectrum for the 
DNS, the red curve is the spectrum for 
α→∞.  

The black curve in the inset corresponds 
to the NSE energy spectrum 
compensated by k3ln(kf+k)1/3. 

The red curve in the inset is the energy 
spectrum Eu(k) for NS-∞ compensated by 
k7. 

The  region 6 < k < 40 is flat indicating the 
nominal range over which the k-7 scaling
holds.

40962

Power law for NS-∞



Conclusion:

k –7 power law
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Figure 5. Compensated energy spectra 
for 20482 simulation for  α =6.5 (kα=39.75; 
vertical dashed line).  

The energy spectrum is  compensated by 
k7, k19/3,  and, k17/3 respectively.  

The region 39 < k < 70 in the first subplot 
follows a flat regime which indicates the 
nominal range over which the k-7 scaling 
holds.
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Figure 6. Isosurfaces of vorticity ∇× v for the 10242 simulation. α = 0, 3.25, 15, 100, ∞,  reading each row
of figures from left to right. The vorticity field exhibits increasingly fine structures as α is increased.



Figure 7. Isosurfaces of vorticity ∇× u for the 10242 simulation. α = 0, 3,25, 15, 100, ∞, reading each row of 
figures from left to right.   The structures become smoother with increasing α.
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