

Analytical Study of Certain Sub-grid Scale Turbulence Models

Edriss S. Titi

University of California – Irvine and Weizmann Institute of Science

Lecture at Imperial College London March 26 - 28, 2007

The Navier-Stokes Equations

$$\frac{\partial}{\partial t}\vec{u} - \upsilon\Delta\vec{u} + (\vec{u}\cdot\nabla)\vec{u} + \frac{1}{\rho_0}\nabla p = \vec{f}$$
$$\nabla\cdot\vec{u} = 0$$

Plus Boundary conditions, say periodic in the box

$$\Omega = [0, L]^3$$

Sobolev Spaces

$$H^{s}(\Omega) = \{\varphi = \sum_{\vec{k} \in \mathbb{Z}^{d}} \hat{\varphi}_{\vec{k}} e^{i\vec{k} \cdot \vec{x} \frac{2\pi}{L}}$$

such that
$$\sum_{\vec{k} \in \mathbb{Z}^{d}} |\hat{\varphi}_{\vec{k}}|^{2} (1 + |\vec{k}|^{2})^{s} < \infty\}$$

By Poincare' inequality

$$\frac{d}{dt} \|\vec{u}\|_{L^2}^2 + c \frac{\upsilon}{L^2} \|\vec{u}\|_{L^2}^2 \le \frac{cL^2}{\upsilon} \|\vec{f}\|_{L^2}^2$$

By Gronwall's inequality

$$\|\vec{u}(t)\|_{L^{2}}^{2} \leq e^{-c \iota L^{2} t} \|\vec{u}(0)\|_{L^{2}}^{2} + \frac{c L^{4}}{\upsilon^{2}} \left(1 - e^{-c \iota L^{-2} t}\right) \|\vec{f}\|_{L^{2}}^{2} \quad \forall t \in [0, T]$$

$$\upsilon \int_{0}^{T} \|\nabla \vec{u}(\tau)\|_{L^{2}}^{2} d\tau \leq K(L, \|\vec{u}_{0}\|_{L^{2}}, \|\vec{f}\|_{L^{2}}, \upsilon, T)$$

Theorem (Leray 1932-34)

For every T > 0 there exists a weak solution (in the sense of distribution) of the Navier-stokes equations, which also satisfies

$\vec{u} \in C_w([0,T], L^2(\Omega)) \cap L^2([0,T], H^1(\Omega))$

The uniqueness of weak solutions in the three dimensional Navier-Stokes equations case is still an open question.

Strong Solutions of Navier-Stokes

$\vec{u} \in C([0,T], H^1(\Omega)) \cap L^2([0,T], H^2(\Omega))$

Enstrophy

 $\|\nabla \times \vec{u}\|_{I^2}^2 = \|\vec{\omega}\|_{I^2}^2 = \|\nabla \vec{u}\|_{I^2}^2$

Formal Enstrophy Estimates

$$\frac{1}{2}\frac{d}{dt}\left\|\nabla\vec{u}\right\|_{L^2}^2 + \upsilon\left\|\Delta\vec{u}\right\|_{L^2}^2 + \int (\vec{u}\cdot\nabla)\vec{u}\cdot(-\Delta\vec{u}) + \int \nabla p(-\Delta\vec{u}) = \int \vec{f}\cdot(-\Delta\vec{u})$$

Observe that
$$\int \nabla p \cdot (-\Delta \vec{u}) dx = 0$$

By Cauchy-Schwarz $\left| \int \vec{f} \cdot (-\Delta \vec{u}) \right| \leq \frac{\left\| \vec{f} \right\|_{L^2}^2}{\upsilon} + \frac{\upsilon}{4} \left\| \Delta \vec{u} \right\|_{L^2}^2$

By Hőlder inequality

$$\left| \int (\vec{u} \cdot \nabla) \vec{u} \cdot (-\Delta \vec{u}) \right| \leq \left\| \vec{u} \right\|_{L^4} \left\| \nabla \vec{u} \right\|_{L^4} \left\| \Delta \vec{u} \right\|_{L^2}$$

Calculus/Interpolation (Ladyzhenskaya) Inequatities

$$\|\varphi\|_{L^{4}} \leq \begin{cases} c \|\varphi\|_{L^{2}}^{\frac{1}{2}} & \|\nabla\varphi\|_{L^{2}}^{\frac{1}{2}} & 2-D \\ c \|\varphi\|_{L^{2}}^{\frac{1}{4}} & \|\nabla\varphi\|_{L^{2}}^{\frac{3}{4}} & 3-D \end{cases}$$

Denote by
$$y = e_0 + \left\| \nabla \vec{u} \right\|_{L^2}^2$$

The Two-dimensional Case

$$\dot{y} \leq c y^2$$
 &
$$\int_{0}^{T} y(\tau) d\tau \leq K(T)$$

$$\Rightarrow y(t) \leq \widetilde{K}(T)$$

Global regularity of strong solutions to the two-dimensional Navier-Stokes equations.

Navier-Stokes Equations

- Two-dimensional Case
 - * Global Existence and Uniqueness of weak and strong solutions
 - * Finite dimension global attractor

One can instead use the following Sobolev inequality

$$\left\|\vec{u}\right\|_{L^6} \le c \left\|\nabla\vec{u}\right\|_{L^2}$$

Which leads to

$$\dot{y} \leq cy^3 \quad \& \quad \int_0^T y(\tau) d\tau \leq K$$

Theorem (Leray 1932-1934) There exists $T_*(\|\vec{u}_0\|_{L^2}, \|\vec{f}\|_{L^2}, \upsilon, L)$ such that $y(t) < \infty$ for every $t \in [0, T_*)$.

Navier-Stokes Equations

- The Three-dimensional Case
 - * Global existence of the weak solutions
 - * Short time existence of the strong solutions
 - * Uniqueness of the strong solutions
- Open Problems:
 - * Uniqueness of the weak solution
 - * Global existence of the strong solution.

Vorticity Formulation

$$\frac{\partial \vec{\omega}}{\partial t} - \nu \Delta \vec{\omega} + (\vec{u} \cdot \nabla) \vec{\omega} - (\vec{\omega} \cdot \nabla) \vec{u} = \nabla \times \vec{f}$$

Vorticity Stretching Term

$$(\vec{\omega}\cdot\nabla)\vec{u}$$

Two dimensional case

$$(\vec{\omega} \cdot \nabla) \vec{u} \equiv \vec{0}$$

$$\frac{\partial \omega}{\partial t} - \nu \Delta \vec{\omega} + (\vec{u} \cdot \nabla) \vec{\omega} = \nabla \times \vec{f}$$

 $\left|\vec{\omega}(x,t)\right|^2$ Satisfies a maximum principle.

The Three-dimensional Case

$$(\vec{\omega} \cdot \nabla)\vec{u} \neq 0$$

$$\vec{\omega} \sim Z$$

 $(\vec{\omega} \cdot \nabla)\vec{u} \sim Z^2$

For large initial data $\vec{\omega}_0$ the vorticity balance takes the form

$$\dot{z} \sim z^2 \implies$$
 Potential "Blow Up"!!

Special Results of Global Existence for the three-dimensional Navier-Stokes

Theorem (Fujita and Kato)

Let $||u_0||_{H^{\frac{1}{2}}}$ be small enough . Then the 3D

Navier - Stokes equations are globally

well - posed for all time with such initial

data. The same result holds if the initial data

is small in $L^3(\Omega)$ (Kato, Giga & Miyakawa)

Let us move to Cylindrical coordinates

Theorem (Ladyzhenskaya) Let $\vec{u}_0(x, y, z) = (\varphi_r^0(r, z), \varphi_\theta^0(r, z), \varphi_z^0(r, z))$

be axi-symmetric initial data. Then the three-dimensional Navier-Stokes equations have globally (in time) strong solution corresponding to such initial data. Moreover, such strong solution remains axi-symmetric.

Theorem (Leiboviz, Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes equations in an infinite Pipe. Let

$$\vec{u}_0 = (\varphi_r^0(r, n\theta + \alpha z), \varphi_\theta^0(r, n\theta + \alpha z), \varphi_z^0(r, n\theta + \alpha z))$$

(Helical symmetry). For such initial data we have global existence and uniqueness. Moreover, such a solution remains helically symmetric.

Remarks

- For axi-symmetric and helical flows the vorticity stretching term is nontrivial, and the velocity field is three-dimensional.
- In the inviscid case, i.e. v=0, the question of global regularity of the three-dimensional helical or axi-symmetrical Euler equations is still open. Except the invariant sub-spaces where the vorticity stretching term is trivial.

Theorem [Cannone, Meyer & Planchon] [Bondarevsky] 1996

Let M be given, as large as we want. Then there exists K(M) such that for every initial data of the form

$$\vec{u}_{0} = \sum_{\left|\vec{k}\right| \ge K (M)} \vec{\hat{u}}_{\vec{k}}^{0} e^{i\vec{k} \cdot \vec{x} \frac{2\pi}{L}}$$

[VERY OSCILLATORY]

the three-dimensional Navier-Stokes equations have global existence of strong solutions.

<u>Remark</u> Such initial data satisfies

$$\|u_0\|_{H^{\frac{1}{2}}} << 1.$$

So, this is a particular case of Kato's Theorem.

The Effect of Rotation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} + \nabla p + \vec{\Omega} \times \vec{u} = 0$$
$$\nabla \cdot \vec{u} = 0$$

- There is $\Omega_0(T, \vec{u}_0)$ such that if $|\Omega| > \Omega_0$ the solution exists on [0, T).
- That is there exists $T_0(\vec{u}_{0,j}|\vec{\Omega}|)$ such that the solution exists on $[0, T_0)$. Observe that

$$T_0 \to \infty \text{ as } \left| \vec{\Omega} \right| \to \infty$$

- Babin Mahalov Nicolaenko.
- Embid Majda.
- Chemin, Ghalagher, Granier, Masmoudi,...
- Liu and Tadmor.

An Illustrative Example

Inviscid Burgers Equation $u_t + uu_x = 0$ in R $u(x,0) = u_0(x)$

• If $u_0(x)$ is decreasing function on some subinterval of \mathbb{R} then the solution of the above equation develops a singularity (Shock) in finite time.

The solution is given implicitly by the relation:

$$u(x,t) = u_0(x - tu(x,t))$$

The Effect of the Rotation

$u \in \mathbf{C} \quad z \in \mathbf{C}$ $u_t + uu_z + i\Omega u = 0$ $u_0(z) = u(z,0)$

 $v(z,t) = e^{i\Omega t} u(z,t)$

$$v_t + e^{-i\Omega t} v_{z} = 0$$

$$v(z,t) = v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t)\right)$$

$$\frac{\partial}{\partial z} v = \frac{v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t)\right)}{1 + \frac{e^{-i\Omega t} - 1}{-i\Omega} v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t)\right)}$$

If $\Omega >> 1$, (i.e. $\Omega > \Omega_0(u_0)$) $\frac{\partial}{\partial z} v$ remains finite and the solution remains regular for all $t \ge 0$.

The above complex system is equivalent to 2D Rotating Burgers:

$$u = u_1 + iu_2, \qquad z = x + iy$$

$$\vec{u}_t + \vec{u} \cdot \nabla \vec{u} + \Omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \vec{u} = 0$$

•

Reynolds Equations

$$\overline{\phi}$$
 - mean $\langle \phi \rangle (x) = \overline{\phi}(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \phi(x, t) dt$

 ϕ' - fluctuations around the mean

Averaged Equations of Motion

Reynolds averaged Navier-Stokes Equations

$$(\bar{v} \cdot \nabla)\bar{v} + \overline{(v' \cdot \nabla)v'} = \nu\Delta\bar{v} - \nabla\bar{p}$$
$$\nabla \cdot \bar{v} = 0$$

Incompressibility condition

Reynolds averaged Navier-Stokes Equations $(\bar{v} \cdot \nabla)\bar{v} + \boxed{\nabla \cdot (v' \otimes v')} = \nu \Delta \bar{v} - \nabla \bar{p}$ $\nabla \cdot \bar{v} = 0$ How to model this in terms of \bar{v} ?

How to close the Reynolds averaged system?

$$\tau_{ij}^{R} = \left(\left(v - \bar{v} \right) \otimes \left(v - \bar{v} \right) \right)_{ij}$$
$$= \overline{v_i v_j} - \overline{v}_i \overline{v}_j$$

Large Eddy Simulations

- Spatial Filtering
- Large Eddy Simulations
- Sub-grid Scale Model
- Let ϕ be nice/smooth spatial filter/kernel

$$\bar{v} = \int \phi(x-y)v(y)$$

$$\frac{\partial \bar{v}}{\partial_t} - \nu \Delta \bar{v} + (\bar{v} \cdot \nabla) \bar{v} = -\nabla \cdot (\tau^R + \bar{p}I)$$
$$\nabla \cdot \bar{v} = 0$$

Here again the problem is to model:

$$div \tau^R$$

and close the system in terms of $\, ar v$

$$\tau_{ij}^R = ((v - \bar{v}) \otimes (v - \bar{v}))_{ij}$$
$$= \overline{v_i v_j} - \bar{v}_i \bar{v}_j$$

Smogarinsky Model

$$\bar{S}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right)$$
$$|\bar{S}|^2 = 2 \sum_{i,j} (\bar{S}_{ij})^2$$

$$\tau_{ij}^R \approx -2\nu_T \bar{S}_{ij}$$

$$\nu_T = l_S^2 |\bar{S}|$$

$$\tau_{ij}^R = ((v - \bar{v}) \otimes (v - \bar{v}))_{ij}$$

$$= \overline{v_i v_j} - \bar{v}_i \bar{v}_j$$

$$\partial_t \bar{v} - \nu \Delta \bar{v} + (\bar{v} \cdot \nabla) \bar{v} = -\nabla \bar{p} + \nu_1 \nabla \cdot (|S|S(\bar{v})) + \bar{f}$$

Camassa-Holm Water Wave Equation

Hamiltonian

$$\int (|u|^2 + \alpha^2 |u_x|^2) \, dx$$

Inviscid Equations

Euler equations

Hamiltonian

$$\int |u(x,t)|^2 \, dx$$

$$\nabla \cdot u = 0$$
 constraint

Euler-α equations (Holm-Ratiu-Marsden)

Hamiltonian

$$\int |u|^2 + \alpha^2 |\nabla u|^2 \, dx$$

$$\nabla \cdot u = 0$$
 constraint

Euler-α (Inviscid Second-Grade Fluid)

$$\frac{\partial v}{\partial t} + (u \cdot \nabla)v - \sum_{j=1}^{3} v_j \nabla u_j + \nabla \pi = f$$
$$\nabla \cdot u = 0$$
$$v = (I - \alpha^2 \Delta)u$$

Or Equivalently

 $\frac{\partial v}{\partial t} - u \times (\nabla \times v) + \nabla p = f$ $\nabla \cdot u = 0$ $v = (I - \alpha^2 \Delta)u$
Euler- α (inviscid second grade fluid)

$$\frac{\partial v}{\partial t} + \left((u \cdot \nabla)v - \sum_{j=1}^{3} v_j \nabla u_j + \nabla \pi = \mathbf{0} \right)$$

$$\nabla \cdot u = \mathbf{0}$$

$$v = (I - \alpha^2 \Delta)u$$
3D (no global)

3D (no global well-posedness) Euler equations when α =0

or Equivalently

$$\frac{\partial v}{\partial t} - u \times (\nabla \times v) + \nabla p = 0$$
$$\nabla \cdot u = 0$$
$$v = (I - \alpha^2 \Delta)u$$

Navier-Stokes-α (The viscous Camassa-Holm equations)

$$\frac{\partial v}{\partial t} - \nu \Delta v + (u \cdot \nabla)v - \sum_{j=1}^{3} v_j \nabla u_j + \nabla \pi = f$$
$$\nabla \cdot u = 0$$
$$v = (I - \alpha^2 \Delta)u$$

$$\frac{\partial v}{\partial t} - \nu \Delta v - u \times (\nabla \times v) + \nabla p = f$$
$$\nabla \cdot u = 0$$
$$v = (I - \alpha^2 \Delta)u$$

The Navier-Stokes- α as a closure model

Reynolds averaged Navier-Stokes Equations

$$(\bar{v} \cdot \nabla)\bar{v} = \nabla \cdot \tau$$

$$\tau = \nu(\nabla \bar{v} + \nabla \bar{v}^T) - \bar{p}I - \overline{v' \otimes v'}$$

Chen, Foias, Holm, Olson, Titi and Wynne, Physics of Fluids 1999 The steady state Navier-Stokes-alpha analytic subgrid scale model of turbulence

$$(u \cdot \nabla)u = \nabla \cdot \tau_{\alpha}$$

 $\tau_{\alpha} = 2\nu(1 - \alpha^2 \Delta)D - pI + \alpha^2 \dot{D}$

where

$$D = \frac{1}{2} (\nabla u + \nabla u^T)$$
$$\Omega = \frac{1}{2} (\nabla u - \nabla u^T)$$
$$\dot{D} = u \cdot \nabla D + D\Omega - \Omega D$$

1

Vorticity Formulation

NSE
$$\omega = \nabla \times u$$

 $\frac{\partial \omega}{\partial t} - \nu \Delta \omega + (u \cdot \nabla) \omega - (\omega \cdot \nabla) u = \nabla \times f$
 $\nabla \cdot u = 0$
VCHE $q = \nabla \times v$ $v = u - \alpha^2 \Delta u$
 $\frac{\partial q}{\partial t} - \nu \Delta q + (u \cdot \nabla) q - (q \cdot \nabla) u = \nabla \times f$
 $\nabla \cdot u = 0$
 $v \cdot \nabla q - q \cdot \nabla u$
 $v \cdot \nabla q - q \cdot \nabla v$

Dimension of Global Attractor (NS-α)

$$d(\mathcal{A}) \le c \left(\frac{L}{\alpha}\right)^{3/2} \left(\frac{L}{l_d}\right)^3$$

Turbulent Channel Flow

Reynolds Averaged Equations

$$-\nu\Delta \langle u \rangle = \langle (u \cdot \nabla u) \rangle + \nabla \langle p \rangle = 0$$
$$\nabla \cdot \langle u \rangle = 0$$

The Reynold stresses

$$\left\langle u^{2}\right\rangle ,\left\langle uv\right\rangle ,\left\langle uw\right\rangle ,\left\langle v^{2}\right\rangle ,\left\langle vw\right\rangle ,\left\langle w^{2}\right\rangle$$

are functions of z alone.

Reynolds Equations

 $-\nu \bar{U}'' + \partial_z \langle wu \rangle = -\partial_x \bar{P}$ $\partial_z \langle wv \rangle = -\partial_y \bar{P}$ $\partial_z \langle w^2 \rangle = -\partial_z \bar{P}$

ansatz
$$u = \begin{pmatrix} U(z) \\ 0 \\ 0 \end{pmatrix}$$

Steady VCHE

$$-\nu U'' + \nu \alpha^2 U'''' = -\partial_x p$$
$$0 = -\partial_y p$$
$$0 = -\partial_z (p - \alpha^2 (U')^2)$$

 $-\nu \bar{U}'' + \partial_z \langle wu \rangle = -\partial_x \bar{P}$ $\partial_z \langle wv \rangle = -\partial_y \bar{P}$ $\partial_z \langle w^2 \rangle = -\partial_z \bar{P}$

Reynolds equations

Identifying Terms in VCHE & Reynolds equations

(i)
$$\overline{U} = U$$

(ii) $\partial_z \langle wu \rangle = \nu \alpha^2 U'''' + p_0$
(iii) $\partial_z \langle wv \rangle = 0$
(iv) $\nabla(\overline{P} + \langle w^2 \rangle) = \nabla(p - p_0 x - \alpha^2 (U')^2)$

The General Solution of VCHE

$$U(z) = a\left(1 - \frac{\cosh(z/\alpha)}{\cosh(d/\alpha)}\right) + b\left(1 - \frac{z^2}{d^2}\right)$$

a, b constants

•

Physical Parameters

- Boundary Stress $\pm \tau_0 = -\langle \tau_{13} \rangle |_{z=\pm d} = \nu \bar{U'}(z) + \langle wu \rangle |_{z=\pm d}$ $\tau_0 = -\nu \bar{U'}(z=-d)$
- Averaged Streamwise Velocity Across the Channel

$$\bar{u} = \frac{1}{2d} \int_{-d}^{d} U(z) dz$$

Reynolds Numbers

$$R = \frac{\bar{u}d}{\nu} \qquad \qquad R_0 = \frac{\tau_0^{1/2}d}{\nu}$$

Length Scales

$$d, \qquad lpha, \qquad l_* = rac{
u}{ au_0^{1/2}} \qquad ext{wall unit}$$

Normalized quantities

Profile

Figure 1 and Figure 2

d/lpha	b/2a	ϕ_m	R_0	$R_{c_{\cdot}}$
12.850378	1.2	17.6	170	2970
48.782079	1.1	20.9	714	14914
65.777777	.9	23	989	22776
100.569105	.9	24.6	1608	39582

$$\phi = rac{a}{u_*} \Big(1 - rac{\cosh(z/lpha)}{\cosh(d/lpha)} \Big) + rac{b}{u_*} \Big(1 - rac{z^2}{d^2} \Big)$$

Experimental data from:
 T. Wei and W.W. Willmarth

• Having blasius drag law $\lambda = 0.06$

•

Figure 7 and Figure 8

- Experimental data from:
 - T. Wei and W.W. Willmarth
- DNS Kim, Moin & Moser
- Having blasius drag law

 $\lambda = 0.06$

$lpha\,$ -- constant away from the boundary

Near the boundary

lpha -- is a function of the distance from the boundary

First Attempt:

•

Figure 9 and Figure 10

Using $\hat{A}(R_0) = \hat{A}_{max}$ as input

Figure 11 and Figure 12

5∟ 10⁰

10¹

10²

10³

10⁴

105

10⁶

Energy Spectrum

Fig. 1. The DNS energy spectrum, $E(k) = E_{\alpha}(k)$, versus the wavenumber k for three cases with the same viscosities, same forcings and mesh sizes of 256³ for $\alpha = 0$ (solid line), $\frac{1}{32}$ (dotted line) and $\frac{1}{8}$ (dotted-dash line). In the inertial range (k < 20), a power spectrum with $k^{-5/3}$ can be identified. For finite α , this behavior is seen to roll off to a steeper spectrum for $k \ge 1/\alpha$.

Energy Spectrum (NS-α)

Foias, Holm, Titi (J. Dyn. Diff. Eqns. 2001)

The Navier-Stokes-alpha subgrid scale model of turbulence

Leray-α Model

0

$$\frac{\partial v}{\partial t} - \nu \Delta v + (u \cdot \nabla)v - \sum_{j=1}^{3} v \cdot \nabla u_j + \nabla \pi = f$$
$$\nabla \cdot u = 0$$
$$v = (I - \alpha^2 \Delta)u$$

Cheskidov, Holm, Olson, Titi (Royal Soc. A, MPES 2005)

The Leray-alpha analytic subgrid scale model of turbulence

$$\frac{\partial}{\partial t}v - \nu\Delta v + (u \cdot \nabla)v + \nabla p = f$$
$$\nabla \cdot u = \nabla \cdot v = 0,$$
$$v = u - \alpha^2 \Delta u$$

Aside: Leray Acta Math. 1934 – Regularized NSE

$$u=\phi_{\alpha}\ast v$$
 $\phi_{\alpha}\,$ - the Green's function associated with $\,(1-\alpha^2\Delta$

NS-α

Dimension of Global Attractor (Leray-α)

$$d(\mathcal{A}) \le C\left(\frac{L}{l_d}\right)^{12/7} \left(1 + \frac{L}{\alpha}\right)^{9/14}$$

Energy Spectrum (Leray-α)

•

Clark-α Model

C. Cao, D. Holm and E.S.T., Jour. Of Turbulence, 6 (2005)

The Clark-alpha subgrid scale model of turbulence

$$\partial_t v - \nu \Delta v + (u \cdot \nabla)v + (v \cdot \nabla)u - (u \cdot \nabla)u - \alpha^2 \nabla \cdot (\nabla u \cdot \nabla u^T) + \nabla q = g,$$
$$\nabla \cdot u = \nabla \cdot v = 0$$

Global Existence and Uniqueness

Attractors dimension and Energy Sepctrum like Navier-Stokes-alpha

ML-a Model

A. Ilyin, E. Lunasin and E.S.T., Journ. Nonlinear Science, 19, (2006)

The Modified-Leray-alpha subgrid scale model of turbulence $\frac{\partial}{\partial_t}v - \nu\Delta v + (v\cdot\nabla)u + \nabla p = f$ $\nabla \cdot v = 0$ $v = u - \alpha^2 \Delta u$

Global Existence and Uniqueness

Attractor's dimension and Energy Spectrum like Navier-Stokes-alpha

Y. Cao, E. Lunasin, and E.S.T, Comm. Math Sci. 4, (2006)

Simplified Bardina turbulence model

$$\partial_t v - \nu \Delta v + (u \cdot \nabla)u = -\nabla p + f,$$

$$\nabla \cdot u = \nabla \cdot v = 0,$$

$$v = u - \alpha^2 \Delta u,$$
Y. Cao, E. Lunash, E.S. TII (CMS 2009)Simplified Bardina turbulence model
$$\partial_t v - \nu \Delta v + (u \cdot \nabla)u = -\nabla p + f,$$
 $\nabla \cdot u = \nabla \cdot v = 0,$ $v = u - \alpha^2 \Delta u,$ 1980 Bardina $\mathcal{R}(v, v) \approx \overline{v} \otimes \overline{v} - \overline{v} \otimes \overline{v}$ 2003 Layton, $\mathcal{R}(v, v) \approx \overline{v} \otimes \overline{v} - \overline{v} \otimes \overline{v}$ Lewandowski $\mathcal{R}(v, v) \approx \overline{v} \otimes \overline{v} - \overline{v} \otimes \overline{v}$ $v \cdot \overline{v} = 0,$ $v = v - \alpha^2 \Delta u,$ Note:

Improvement from Layton and Lewandowski (2003)

initial data:
$$f \in L^2, \ u(0) = u^{in} \in H^1$$

weak solution:
$$u \in C([0,T];H^1) \cap L^2([0,T];H^2)$$
$$\frac{du}{dt} \in L^2\left([0,T);L^2\right)$$

$$d_H(\mathcal{A}) \le d_F(\mathcal{A}) \le c \left(\frac{L}{\alpha}\right)^{12/5} \left(\frac{L}{l_d}\right)^{12/5}$$

Y. Cao, E. Lunasin, E.S. Titi (CMS 2006) Simplified Bardina turbulence model $\partial_t v - \nu \Delta v + (u \cdot \nabla)u = -\nabla p + f,$ $\nabla \cdot u = \nabla \cdot v = 0,$ $v = u - \alpha^2 \Delta u,$

The mathematical theory of simplified Bardina is complete Continuous dependence on initial data Global existence and uniqueness Convergence to NSE Convergence to NSE

Excellent match with experimental data

Energy spectra

Inviscid Simplified Bardina Model

Y. Cao, E. Lunasin, E.S.T., Communications in Math. Sciences, 4 (2006)

$$\begin{split} \partial_t v - \nu \overleftarrow{} v + (u \cdot \nabla) u &= -\nabla p + f, \\ \nabla \cdot u &= \nabla \cdot v = 0, \\ v &= u - \alpha^2 \Delta u, \end{split}$$

$$-\alpha^2 \Delta \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = f,$$
$$\nabla \cdot u = 0,$$
$$u(x, 0) = u^{in}$$

This result has important application in computational fluid dynamics when the inviscid model is considered as a regularizing model of the 3D Euler equations.

Also note that the inviscid simplified Bardina model is a globally well-posed model approximating the Euler equations without adding hyperviscous regularizing term.

$$-\alpha^2 \Delta \partial_t u + \partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f$$
$$\nabla \cdot u = 0$$

This is a global regularization of the three-dimensional Navier-Stokes. This regularization works also in the case of no-slip Dirichlet Boundary conditions. Inspired by the inviscid simplified Bardina model, we propose

$$\begin{aligned} & -\alpha^2 \Delta \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f, \\ & \nabla \cdot u = 0, \\ & u(x,0) = u^{in} \end{aligned}$$

Introduced by Oskolkov (1973) as a model of motion of linear, viscoelastic fluids. Models dynamics of Kelvin-Voight viscoelastic incompressible fluids.

Global attractors, estimates of the number of determining modes by V. Kalantarov and E.S.Titi (preprint)

Inviscid Regularization of the Surface Quasi-Geostrophic

B. Khouider and E.S. Titi, Communications Pure Applied Math. (2007)

$$-\alpha^2 \Delta \theta_t + \theta_t + u \cdot \nabla \theta = 0$$

$$u = \nabla^{\perp} (-\Delta)^{-1/2} \theta$$

This inviscid regularization retains the maximum principle.

S. Kurien E. M. Lunasin M. Taylor E. S. Titi

Observation:

In 2d NS- α the conserved (° = 0 and f = 0) "energy" and "enstrophy" are as follows

Recall that we have two kinds of velocity

NS-alpha

$$\begin{array}{l} \partial_t v - u \times (\nabla \times v) + \nabla \tilde{p} = \nu \Delta v + f \\ v = (1 - \alpha^2 \Delta) u & \text{Don't forget} \\ \hline v & \text{un-smoothed velocity field} \\ \hline \frac{1}{2} \frac{d}{dt} \overline{\langle v, u \rangle} = -\nu (|\nabla u|^2 + \alpha^2 |\Delta u|^2) + \langle f, u \rangle \\ \hline \langle u \times \nabla \times v, u \rangle = 0 \\ \hline \langle u \times \nabla \times v, u \rangle = 0 \end{array}$$
energy conserved := $\frac{1}{2} (|u|^2 + \alpha^2 |\nabla u|^2)$

NS-alpha vorticity formulation

$$\begin{array}{l} \partial_t q + (u \cdot \nabla)q = \nu \Delta q + \nabla \times f \\ \text{vorticity} \quad q = \nabla \times v \\ (q \cdot \nabla)u \neq \vec{0} \\ \\ \frac{1}{2} \frac{d}{dt} |q|^2 = -\nu |\nabla q|^2 + \langle \nabla \times f, q \rangle \\ \langle u \cdot \nabla q, q \rangle = \vec{0} \\ \end{array}$$

$$\begin{array}{l} \text{enstrophy} \quad := \frac{1}{2} |q|^2 \\ \text{conserved} \quad := \frac{1}{2} |q|^2 \end{array}$$

Energy Spectrum of Two-Dimensional Navier-Stokes equations

Analytical Result 2: Power laws for the 2D NS-α Proof: LKTT (2007, JOT):

- a. Split the flow into 3 wavenumber ranges : [1,k), [k,2k), $[2k,\infty)$ Assume $k_f < k$
- b. Define the energy of an eddy of size 1/k as:
- c. Enstrophy balance for eddy of size 1/k: where Z_k represents the net amount of enstrophy per unit time transferred into wavenumbers larger than k.
- d. Candidates for averaged velocity:

$$\begin{aligned} u &= u_{k}^{<} + u_{k} + u_{k}^{>} \\ v &= v_{k}^{<} + v_{k} + v_{k}^{>} \\ q &= q_{k}^{<} + q_{k} + q_{k}^{>}. \end{aligned}$$

$$E_{\alpha}(k) &= (1 + \alpha^{2}|k|^{2}) \sum_{|j|=k} |\hat{u}_{j}|^{2} \\ \frac{1}{2} \frac{d}{dt}(q_{k}, q_{k}) + \nu(-\Delta q_{k}, q_{k}) = Z_{k} - Z_{2k} \\ Z_{k} &:= -b(u_{k}^{<}, q_{k}^{<}, q_{k} + q_{k}^{>}) \\ + b(u_{k} + u_{k}^{>}, q_{k} + q_{k}^{>}, q_{k}^{<}) \\ \text{Don't forget} \\ U_{k}^{0} &= \left\langle \frac{1}{L^{3}} \int_{\Omega} |v_{k}|^{2} dx \right\rangle^{1/2} \\ U_{k}^{1} &= \left\langle \frac{1}{L^{3}} \int_{\Omega} |u_{k}|^{2} dx \right\rangle^{1/2} \\ U_{k}^{2} &= \left\langle \frac{1}{L^{3}} \int_{\Omega} |u_{k}|^{2} dx \right\rangle^{1/2} \end{aligned}$$

Therefore we get the following 3 characteristic timescales:

Dissipation rate:

Hence,

Main Result: The kinetic energy spectrum for the variable **u** is:

$$\begin{aligned} \tau_k^n &:= \frac{1}{kU_k^n} = \frac{(1+\alpha^2k^2)^{(n-1)/2}}{k^{3/2}(E_\alpha(k))^{1/2}} \quad (n=0,1,2) \\ \eta &\sim \frac{1}{\tau_k^n} \int_k^{2k} (1+\alpha^2k^2) k^2 E_\alpha(k) dk \sim \frac{k^{9/2} \left(E_\alpha(k)\right)^{3/2}}{(1+\alpha^2k^2)^{(n-3)/2}} \\ & E_\alpha(k) \sim \frac{\eta^{2/3} (1+\alpha^2k^2)^{(n-3)/3}}{k^3} \end{aligned}$$

$$E^{u}(k) \equiv \frac{E_{\alpha}(k)}{1 + \alpha^{2}k^{2}} \sim \begin{cases} \frac{\eta_{\alpha}^{2/3}}{k^{3}}, & \text{when } k\alpha \ll 1\\ \frac{\eta_{\alpha}^{2/3}}{\alpha^{2(6-n)/3}k^{(21-2n)/3}}, & \text{when } k\alpha \gg 1 \end{cases}$$

9/2

1

 $U_k^1 = \left\langle \frac{1}{L^3} \int_{\Omega} u_k \cdot v_k dx \right\rangle^{1/2}$

 $U_k^2 = \left\langle \frac{1}{L^3} \int_{\Omega} |u_k|^2 dx \right\rangle^{1/2} \sim$

Establish two power laws in the enstrophy inertial subrange range numerically.

Verify the semi-rigorous arguments.

What has been done in 3D NS- α ?

Large scale dynamics of the flow is captured by the NS- α eqautions.

S. Chen et al. / Physica D 133 (1999) 66-83

Also by Mohseni, Kosovic, Shkoller and J. Marsden (2003 Phys. Fluids)

What has been done in 2D NS- α ?

B. Nadiga and S. Shkoller (2001 Phys. Fluids) –

inverse energy inertial range.

Power law prediction for k > k_{α} in the forward enstrophy cascade regime $\rightarrow k^{-5.6}$ (not enough resolution to verify).

Figure 1. Energy spectra for a 256^2 simulation with fixed viscosity and varying hypoviscosity coefficient μ .

The wavenumber k is in multiples of 2 π . The solid lines are the DNS α =0 calculations of E(k).

The dotted lines are the NS- α model calculations of E^u(k) for small α .

The behaviour of the spectra is largely independent of the magnitude of the hypoviscosity in the enstrophy cascade subrange (6 < k < 15).

The inset shows the spectra compensated by k^{4.5}.

The resolution of this simulation is far to small to observe the expected scaling exponent.

Scale (to prevent trivial dynamics)

$$\partial_t v - \nu \Delta v - u \times \nabla \times v = -(\alpha/L)^2 \nabla p + (\alpha/L)^2 f$$
$$\nabla \cdot u = \nabla \cdot v = 0$$
$$v = u - \alpha^2 \Delta u$$

Take the limit $\alpha \rightarrow \infty$

$$\begin{array}{l} \partial_t v - \nu \Delta v - u \times \nabla \times v = -\nabla p + f \\ \nabla \cdot u = \nabla \cdot v = 0 \\ v = -L^2 \Delta u \end{array}$$

Figure 2. Energy spectra for 1024² simulation.

The black curve is the DNS (α = 0) which shows close to k⁻³ scaling in the enstrophy cascade range 6 < k < 20.

The solid red curve is the E^u(k) spectrum as $\alpha \rightarrow \infty$ which scales close to k⁻⁷ in the enstrophy cascade range 6< k < 25.

The energy spectra for intermediate values of α tend to the $\alpha \to \infty$ limit as α increases.

The inset shows the DNS energy spectrum (black) compensated by $k^{3.7}$ and the $\alpha \to \infty$ energy spectrum (red) compensated by $k^{7.4}$

1024² simulation: Why NS- ∞ equations?

Figure 3. Energy spectra for **2048**² simulation.

The wavenumber is in multiples of 2π .

The black curve is the energy spectrum of the DNS which shows close to k^{-3} scaling in the enstrophy cascade range 6<k<35.

The solid red curve is the E^u(k) spectrum as $\alpha \rightarrow \infty$ which scales approximately as k^{-7.1} in the wavenumber region 6<k<25.

The inset shows the DNS energy spectrum (black) compensated by $k^{3.5}$ and the $\alpha \rightarrow \infty$ energy spectrum (red) compensated by $k^{7.1}$

2048²

Comparing energy spectra for different values of $\boldsymbol{\alpha}$

Figure 4. Energy spectra for 4096² simulation.

The black curve is the spectrum for the DNS, the red curve is the spectrum for $\alpha \rightarrow \infty$.

The black curve in the inset corresponds to the NSE energy spectrum compensated by $k^3 ln(k_f+k)^{1/3}$.

The red curve in the inset is the energy spectrum $E^{\text{u}}(k)$ for $NS\text{-}\infty$ compensated by $k^7.$

The region 6 < k < 40 is flat indicating the nominal range over which the k^{-7} scaling holds.

4096²

Power law for NS- $\!\infty$

Conclusion:

k⁻⁷ power law

4096²

Power law for NS- $\!\infty$

Figure 5. Compensated energy spectra for 2048² simulation for α =6.5 (k_{α}=39.75; vertical dashed line).

The energy spectrum is compensated by k^7 , $k^{19/3}$, and, $k^{17/3}$ respectively.

The region 39 < k < 70 in the first subplot follows a flat regime which indicates the nominal range over which the k⁻⁷ scaling holds.

2048²

Power law for finite $\alpha = 6.5$

Figure 6. Isosurfaces of vorticity $\nabla \times \mathbf{v}$ for the 1024² simulation. $\alpha = 0, 3.25, 15, 100, \infty$, reading each row of figures from left to right. The vorticity field exhibits increasingly fine structures as α is increased.

Figure 7. Isosurfaces of vorticity $\nabla \times \mathbf{u}$ for the 1024² simulation. $\alpha = 0, 3, 25, 15, 100, \infty$, reading each row of figures from left to right. The structures become smoother with increasing α .

