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The equation for w,w; for statistically stationary turbulent shear flow
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at sufficiently high
Reynolds numbers the turbulent vorticity budget (3.3.38) may be approxi-

mated as (Taylor, 1938)
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The budget of mean-square vorticity fluctuations is thus approximately
independent of the structure of the mean flow. Turbulent vorticity fluctua-

tions, unlike turbulent velocity fluctuations, do not need the continued pres-
ence of a source term associated with the mean flow field. Of course, in the
absence of a source of energy, turbulent vorticity fluctuations will decay, too.
Also, the rate of change of w.w;, as represented by (3.3.59), is small com-
pared to the rate at which turbulent vortex stretching occurs.




TENNEKES AND LUMLEY BALANCE(1972, P.91):
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Enstrophy production is approximately balanced in the mean by viscous
terms at gsofficient@y Kigh Reynolds numbers™ in statistically
stationary turbulent shear flow —> Three questions:

# Is it only/just in the mean?
# Does this happen only at sufficiently large Reynolds numbers?
H Is this balance violated in statistically non-stationary turbulence”

*In this sense - but not only in this - turbulence is not slightly viscous at
whatever large Reynolds number. In this context the question: what
happens with enstrophy/strain production as v—0 is of special interest
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The property of self amplification of vorticity and strain is responsible for the fact the neither
enstrophy co” nor the total strain s* are inviscid invariants as is the kinetic energy u*
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A RRBELRS O S OF VORTICITY )
AMPLIFICATION © AND '

SELF-RANDOMIZATION/INTRINSIC STOCHASTICITY: NO SOURCE OF

RANDOMNESS IS NEEDED, THE FORCING CAN BE CONSTANT IN TIME
| | | VELOCITY DERIVATIVES

AT THE LEVEL OF VELOCITY  [RSRCR _5
DERIVATIVES: VORTICITY AND 8 I .
STRAIN (DISSIPATION)
THE EXTERNAL FORCING IS
IRRELEVANT

Three cases:

| 1. DNS in a periodic box, Re,=102 ek
2. DNS in a channel flow, Re=5600 P i
3. Atmospheric SL, Re,=10% Re=10°
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Enstrophy balance
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The equation for the mean enstrophy of the turbulent fluctuations %{wz}
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Strain balance
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The equation for the mean total strain of the turbulent fluctuations (si;si;)
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ATMOSPHERIC SURFACE
LAYER

 REF10% RE=105 <&



The equation for the mean enstrophy of the turbulent fluctuations %{wz}
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The equation for the mean total strain of the turbulent fluctuations (sijsij)
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FIELD EXPERIMENT SUMMER.2004 SILS -
MARIA, SWITZERLAND

Height 1850 m:
Experiment was
pérformed n
collaboration. of ‘Institute
of {Hydromechanics and
Water: Resources.
Management, ETH. Lurich

The calibration unit at 3 m.
in the field | '







JTHE PROBE

Manganin is used as a

material for the sensor
!k prongs instead of

/ /4 Sl tungsten because the

/ temperature coefficient of

\ . the electrical resistance of
/j_, , manganin is 400 times
olfiires ! smaller than that of
7 tungsten.

The tlﬁ éf the probeﬁl’th prongs m’éde of manganﬁn‘




The equation for the mean enstrophy of the turbulent fluctuations %{wz}
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The equation for the mean total strain of the turbulent fluctuations (sijsij)
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'DNS IN A PERIODIC BOX |
RE,~10°



STATIONARY. The equations are solved using a standard

pseudospectral method for the space variables and a second-
order Adams—Bashforth finite difference scheme for time
stepping. Resolutions range from 32° to 256° uniformly dis-
tributed grid points, according to the Reynolds number. Sev-
eral versions of forcing were used—all 1n large scales. The
first one 1s a deterministic forcing with a force corresponding

to the ABC flow,” f=f{4 sinz+Ccosy.Bsinx+4cosz,
Csiny+Bcosxp, A=B=C. This forcing, denoted in the se-

quel as ABC, is strongly helical, curl fl|f, and therefore along
with kinetic energy such a forcing makes an input of helicity
into the flow. The second kind of forcing corresponds
to a force i the form f=/f{4 coszcosy.Bcosxcosc.
Ccosycosx}, A=B=C. This forcing, denoted in the sequel

as NH. 1s nonhelical. f-curl f=0. Computations were also
made with the random versions (RABC and RNH) of the

above-mentioned forcings, in which the 4, B. C coefficients
were random functions in time.




TEMPORAL EVOLUTION OF SPATIAL INTEGRALS
IN THE ENSTROPHY BALANCE EQUATION

| (72)Dw?Dt = wwys; + VuyAuy + €, dF JoX; |

dE,,/dt P, -b, F,

Note i) approximate balance betvieen P, and j~D,,
and ii) irrele%ahce of the forcing term F,
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D@ES THE T & BAMNJCE
HOLD @NLY/JUST IN THE
MEAN?

D@ES THE T& L BAM&NCE
~ HOLD ONLY AT
SUFFICIENTLY LARGE
REYNQLDS NUJMB Eﬁiﬂ




DOES THE T & L BALANCE
HOLD ONLY IN STATISTICALLY

STATIONARY TURBULENGE?



PERIODICALLY FORCED
TURBULENCE
The simulation parameters:
8 Resolution 128°

Forcing: ABC multiplied by (1 + A, cos Qt) with
A, =05 and Q=0, 6 and 30

d Velocity field parameters:
Eddy turn over time 50
_ Taylor Reynolds number Re, = 50




From now on {...) means |...dV




 Enstrophy balance
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CONCLUDING

The T &L enstrophy balance holds not only
# in the mean
# at sufficiently large Reynolds numbers

# in statistically stationary turbulence
# A similar balance holds for the total strain s, s,
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