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Space-filling fractal square grids fitted at the entrance of a wind tunnel’s test section generate unusually high

Reynolds number homogeneous isotropic turbulence which decays locked into a single length-scale l. Specifically,

during turbulence decay along the streamwise coordinate x, E11(k1, x) = u′2lf(k1l) over the entire range of wavenum-

bers, where l and the function f are about the same for all the grids tried here. As a result, this fractal-generated

turbulence has the following properties which we have also observed in the decaying region: L/λ is constant, inde-

pendent of x, grid and Reλ; ε ∼ Re−1
λ u′3/Lu; and E11(k1) ∼ (u′3

Lu

)2/3k
−5/3
1 instead of E11(k1) ∼ ε2/3k

−5/3
1 in the

observed range of wavenumbers where f(k1l) ∼ (k1l)
−5/3.



I. INTRODUCTION

In free stream turbulence, the kinetic energy dissipation is caused by viscous forces. Yet, when the turbulence

is intensified and these viscous forces reduced relative to the inertial forces which generate it, it’s kinetic energy’s

dissipation rate ε does not decrease relative to it’s generation rate1,2. This is the well-known dissipation anomaly,

central to all turbulence theories, phenomenology and modelling. No laboratory and field measurements of fluid

turbulence nor any numerical simulations have ever produced evidence to the contrary; in fact they all support

this dissipation anomaly3,4. One of the recognised major problems in modern mathematics and mathematical fluid

mechanics concerns the regularity of solutions of the Navier-Stokes equations, which govern fluid flow, and is directly

related to the dissipation anomaly. Indeed, ε is proportional to the fluid’s kinematic viscosity ν multiplied by the

average of the square of the fluid velocity gradients, < ( ∂u
∂x

)2 >. In the limit where ν tends to zero (Reynolds number

tends to infinity), < ( ∂u
∂x

)2 > should tend to infinity if the dissipation anomaly is to hold, a property which requires

the flow field to be irregular except at vanishingly small scales (i.e. scales that tend to zero with vanishing viscosity).

The dissipation anomaly was used by Kolmogorov as the foundation of his celebrated 1941 theory of turbulence2

and has since served as cornerstone in all modelling attempts of all turbulent flows5, including one-point closures

such as the widely used k − ε model, and two-point closures such as Large Eddy Simulations.

According to a number of turbulence theories and models, this anomaly and related irregularities of the flow are

characterised by an underlying fractal/multifractal and/or spiral/multispiral flow structure where velocity gradients

reside and as a result of which < ( ∂u
∂x

)2 > increases with Reynolds number (starting with Novikov6, Mandelbrot7,

Frisch et al8, Lundgren9 and Parisi & Frisch10 and continuing with extensions to multifractals2 and multispirals11 ,12).

As Reynolds number increases, this multiscale geometrical structure gets replicated at ever smaller scales thus in-

creasing the proportion of space where velocity gradients are high but also increasing their intensity. In these models,

scalings of various properties of isotropic homogeneous turbulence (such as the scalings of power spectra on wavenum-

ber, the scalings of structure functions on separation distance and the scalings of dissipation rates on Reynolds and

Peclet numbers) are related to the underlying fractal and/or spiral flow structure of the turbulence.

The implication is that one might be able to tamper with the dissipation anomaly if one can tamper with this inner

multiscale flow geometry of the turbulence. What better way to attempt such a profound turbulence modification

than by generating turbulence with fractal grids? Recent studies of fractal-forced Navier-Stokes turbulence using

direct numerical simulations13 and analytically derived rigorous upper bounds14 predict a severe enhancement of

dissipation and a break-down of the dissipation anomaly. Can such effects be obtained in the laboratory?

This prompted a few laboratory experiments culminating with those of Hurst & Vassilicos15 where attempts were
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made to modify the underlying fractal and/or spiral inner geometry of the turbulence by generating the turbulence

with fractal grids. Hurst & Vassilicos15 experimented with a total of 21 different planar fractal grids placed at the

entrance of and fitting a wind tunnel’s test section in the spirit of earlier seminal works16 ,17,18 which used “classical

grids”, that is grids made of regular rectangular arrays of bars. Of the three families of fractal grids used, the

space-filling fractal square grids (space-filling in the sense that the fractal dimension Df of their perimeter takes the

maximum possible value, i.e. Df = 2) returned the most unusual results. The intensity of the turbulence generated

by these grids builds up as the turbulence is convected downstream till a distance xpeak is reached from the grid

where the turbulence intensity peaks and then decays exponentially. During this exponential decay, which occurs at

streamwise distances x from the grid larger than xpeak, the Taylor microscale and the longitudinal and lateral integral

length-scales remain approximately constant.

A turbulence with kinetic energy that decays exponentially whilst its integral length-scales remain constant is

either non-isotropic and/or non-homogeneous or, if it is homogeneous and isotropic, is such that the kinetic energy

dissipation rate per unit mass, ε, is not equal to Cεu
′3/Lu, where Cε is a universal constant, u′ is the streamwise r.m.s.

turbulence velocity and Lu is the streamwise integral length-scale. Initial checks carried out by Hurst & Vassilicos15

at the largest possible streamwise distances in their test sections indicated satisfactory statistical homogeneity and

large-scale isotropy. However, it is crucial to test for homogeneity and isotropy (most importantly small-scale isotropy)

at as many streamwise stations x larger than xpeak as possible, and this is the first objective of this present paper. If

this fractal-generated turbulence is found to be homogeneous and isotropic far downstream where it is decaying, then

we will be forced to face the question whether our fractal stirrer modifies the turbulence so deeply that it modifies

the relation between kinetic energy dissipation rate and Reynolds number.

Such a question was also addressed by Mazzi & Vassilicos13 and Cheskidov et al14 who considered stationary

turbulence with periodic boundary conditions persistently driven by a broad-band force which, in wavenumber space,

has an amplitude proportional to a power β of wavenumber up to the largest excited wavenumber. Such a force

injects energy over a wide range of scales. The numerical simulations of Mazzi & Vassilicos13 and the analytically

derived rigorous upper bounds of Cheskidov et al14 agreed in predicting a severe enhancement of dissipation: the

kinetic energy dissipation rate becomes an increasing function of Reynolds number provided the power β is larger

than a critical value which is in fact negative14. It must be stressed, however, that these authors’s spatially periodic

turbulence persistently driven by a fractal body-force is very different from the turbulence generated by a fractal grid

in the wind tunnel. Nevertheless, the question addressed by these authors is effectively the same as ours.

The paper is structured as follows. Section II describes the experimental apparatus and section III the space-

filling fractal square grids used in this work along with confirmations and extensions of results obtained by Hurst
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& Vassilicos15 about the turbulence they generate. In section IV we demonstrate that the decaying turbulence far

downstream from these fractal grids is statistically homogeneous and isotropic and in sections V and VI we report

the dissipation and spectral properties of this decaying turbulence. Conclusions are given in section VII.

II. EXPERIMENTAL APPARATUS AND MEASUREMENTS

Experiments were conducted in a conventional open-circuit wind tunnel with a working section of T 2 = 0.462m2

cross section and 4.2m length. Its maximum speed, when empty, is 33m/s and the background turbulence intensity

is 0.4%.

Flow velocities were measured by hot wire anemometry. The hot wires used in this work were manufactured from

wollaston wire consisting of a 5 µm diameter, platinum alloy core (10% Rhodium) coated with silver up to an external

diameter of 20-25 µm. Both single wire and x-wire measurements were conducted. In the latter case, wires were

soft-soldered to the top of a Dantec 55P51 x-wire probe. This probe has straight prongs with sensor angles of 45o

and a 1mm spacing between the two sets of prongs. The wire sensing element was then obtained by etching away a

central portion of the silver coating in an electrolytic nitric acid bath. The resulting platinum element was roughly

1mm long, giving a sensing length to diameter ratio of lw/dw ' 200. A 6mm diameter Dantec 55H24 probe support

was used to support the x-wire probes.

We used a state of the art AALab AN-1005 constant-temperature anemometer system with four channels of which

we used two. This anemometer has a high frequency response (80 kHz using 5 µm wollaston wires) and enables

accurate small-scale measurements to be made. The highest resolvable frequency is of order U
lw

, where U is the mean

free-stream velocity which was varied between about 7m/s and 19m/s. Hence, the maximum frequency is about 20

kHz for our wires (lw ≈ 1mm), well within the capabilities of our anemometer.

The AALab anemometer has built-in signal conditioners, filters and an acquisition card. The built-in signal

conditioners were used to offset and amplify the analogue signals output by each anemometer. The resolution of the

built-in acquisition card is 16 bit. A typically expected signal to noise ratio is 60dB.

The hot wires were statically calibrated in the free-stream flow of the wind tunnel. The free-stream velocity was

measured using a 6mm pitot-static probe, fixed at the inlet of the tunnel and connected to a Betz manometer.

Homogeneity traverses were performed to verify that the local free-stream velocity matched the inlet velocity. Good

calibrations are achieved with the AALab anemometer by fourth order polynomial fits of the velocity as a function

of voltage, which provides small corrections to the usual King’s law.

Systematic directional calibrations of the x-wire were also performed, first by aligning it with the freestream flow
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to record anemometer voltage output at various tunnel speeds, then by setting the tunnel running at a constant speed

and rotating the entire x-wire probe ±20o in 5o increments.

Sampling frequency was chosen so as to pick up the smallest scales accurately resolved by the anemometer/wire.

To satisfy the Nyquist condition sampling was carried out at twice the frequency of the smallest resolvable scales.

Tunable low-pass filtering was used in order to remove noise and to prevent higher frequencies from folding back

(aliasing) and distorting the lower frequencies of the sampled signal. The setting of the low-pass filter was always

set to half the sampling frequency. In this paper, measured frequency spectra are presented and interpreted as

wavenumber spectra using Taylor’s frozen turbulence hypothesis where wavenumber k1 relates to frequency f by

k1 = 2πf/U . This hypothesis is valid when turbulence intensities are not too high, as is indeed the case here where

turbulence intensities are always clearly below 10%.

For single wire measurements we sampled up to 4 million points whilst for x-wire measurements this was limited

to 3 million points per channel. A typical longitudinal integral length was 5cm, so that data was sampled for a

period of time that captured between 35,000 and 60,000 longitudinal integral lengths of the flow in the range of

mean free stream velocities reported here. We checked that the statistics obtained with such samples are converged.

Longitudinal and lateral integral length-scales Lu and Lv were calculated by integrating the autocorrelation function

of the streamwise and cross-stream velocity components u and v respectively.

The kinetic energy dissipation rate per unit mass, ε, was calculated from ε = 15ν < ( ∂u
∂x

)2 >, which is valid for

isotropic turbulence1 and where ν is the kinematic viscosity of the fluid; < ( ∂u
∂x

)2 >=
R

k2
1E11(k1)dk1 where E11(k1) is

the power spectrum of the streamwise velocity fluctuations in the streamwise direction. Thus we obtained estimates

of the Kolmogorov length-scale η. In all our measurements, it was estimated that lw ' 3 - 12η for U ranging between

about 7m/s to 19m/s.

The hot wire spatial resolution decreases with increasing wind tunnel speed, and one may expect some resulting

errors in the estimation of < ( ∂u
∂x

)2 > from
R

k2
1E11(k1)dk1. At our lower and moderate speeds we fully resolve up to

wavenumbers k1η = 1 and well above. However, at our highest speed 19m/s we fully resolve only up to wavenumbers

k1η ≈ 0.8. We checked that the main contribution to the integral
R

k2
1E11(k1)dk1 always comes from the integration

range k1η ≤ 0.4 and we estimated that the unresolved scales result in this integral being underestimated by about

5% in our worst, highest speed, case. This may also result in some slight overestimations of the Taylor microscale λ

at our highest speeds as we calculate λ from u′2/ < ( ∂u
∂x

)2 >.
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III. SPACE-FILLING FRACTAL SQUARE GRIDS AND THE TURBULENCE THEY

GENERATE

We experimented with three of the five planar fractal square grids which Hurst & Vassilicos15 used in this same

wind tunnel. These fractal grids are all space-filling (in the sense that Df = 2 –the precise definition of Df can be

found in Hurst & Vassilicos15) for best homogeneity and all have the same blockadge ratio σ = 25%. The number

of fractal iterations is N = 4 as can readily be seen from the scaled diagrams in figure 1. Hurst & Vassilicos15

showed that a complete description of these grids requires a minimum of five parameters, including the tunnel size

T = 0.46m. With Df = 2, N = 4, σ = 25% and T = 0.46m, four of the five parameters are set, and set to equal

values, for all our three grids. These grids have therefore been designed to vary by only one parameter, the thickness

ratio tr of the largest square’s cross-stream thickness to the smallest squares’s cross-stream thickness in figure 1 (the

streamwise thickness of all the squares making the grid is 5mm). It is possible to widely vary tr whilst only slightly

varying the effective mesh size15 Meff within a narrow range. The three space-filling square grids therefore differ by

their values of tr; tr = 8.5, 13.0, 17.0.

FIG. 1: Scaled diagrams of space-filling square grids for the T = 0.46m tunnel: tr = 8.5, 13.0, 17.0

N Df σ (%) Meff (mm) tr Rt

4 2.00 25±2.0 26.4 8.5 0.49

4 2.00 25±2.0 26.3 13.0 0.43

4 2.00 25±2.0 26.2 17.0 0.39

TABLE I: Fractal square grid geometries. Rt is the ratio of successive iteration thickness and therefore tr = R1−N
t .

The errors on σ are estimated by assuming the thickness of each iteration to be accurate within plus/minus the

diameter of the manufacturing cutting laser (0.15mm).
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Grid tr 8.5 tr 13.0 tr 17.0

L0 (mm) 237.5 237.7 237.8

L1 (mm) 118.8 118.9 118.9

L2 (mm) 59.4 59.4 59.5

L3 (mm) 29.7 29.7 29.7

t0 (mm) 14.2 17.2 19.2

t1 (mm) 6.9 7.3 7.5

t2 (mm) 3.4 3.1 2.9

t3 (mm) 1.7 1.3 1.1

TABLE II: Fractal square grid geometries: Lj are the successive bar lengths from j = 0 (L0 = Lmax) to j = N−1 = 3

(L3 = Lmin). The successive bar thicknesses are tj , j = 0, ..., N − 1, and tr = t0/tN−1 = t0/t3.

By square construction and tunnel width constraint, the maximum and minimum lengths of the bars making the

squares on the grids are Lmax = 237.4mm and Lmin = 29.7mm for all three grids. A complete quantitative description

of these space-filling fractal square grids is given in tables I and II. Note that Meff , σ, Lmax and Lmin are the same

for all three grids which differ only by their values of tmax and tmin. Hurst & Vassilicos15 found that the intensity

of the turbulence generated by these grids builds up as the turbulence is convected downstream till a distance xpeak

is reached from the grid where the turbulence intensity peaks. Beyond xpeak the turbulence decays exponentially,

u′2 = u′2
peakexp[−(x − xpeak)/lturb] where u′2

peak increases linearly with tr and lturb is independent of x. They also

found that the Taylor microscale λ and the longitudinal and lateral integral length-scales (Lu and Lv respectively)

remain approximately constant during decay at x � xpeak. They obtained these results from measurements along

the tunnel’s centreline, i.e. measurements along the line y = z = 0 for different values of x. We confirmed their

results that λ, Lu and Lv are approximately independent of x and of fractal square grid choice at distances x > xpeak

where the turbulence decays (see figures 2). In particular, we have confirmed the finding of Hurst & Vassilicos15 that

λ(x) may be fitted by the classical form λ ∼ (x − x0)
1/2 only if the virtual origin is x0 ≈ −8m, i.e. lies 8m behind

the grid, and that for such values of x0, a fit of u′2 by the usual power law form (x − x0)
−n requires n ≈ 6.75, much

steeper than any existing theory and measurements would suggest2 ,16,18 ,19. The slight increase of λ with x which

one can in fact observe may well be fitted by a form λ ∼ (x − x0)
s, but the requirement that u′2 decays as a power

law with exponent n in the usual range 1 ≤ n ≤ 2.5 imposes a value of x0 much closer to 0 than to −8m and thereby

leads to a best-fit value of s much closer to 0 than to 1/2. It is well known16,19, though, that a power-law decay of

homogeneous isotropic turbulence is impossible without s = 1/2. Positive values of s that are much smaller than 1/2
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and only slightly different from 0 are consistent with stretched exponential decay forms of u′2. However, we consider

such stretched exponentials to be small corrections to the exponential form u′2 = u′2
peakexp[−(x − xpeak)/lturb] and

small values of s to be small corrections to s = 0 and leave these corrections for future study.

As figures 2 show, we extend the validity of the results that λ, Lu and Lv are approximately independent of x and

fractal square grid to a substantial range of mean flow velocities upstream of the grid, U∞ from 7m/s to 19 m/s. We

also report the new result that λ, Lu and Lv do not depend substantially on U∞ in the decay region x > xpeak.
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FIG. 2: The longitudinal and lateral integral length-scales Lu and Lv (in meters) and the Taylor microscale λ (which

lies in the range 6.7mm to 8.0mm in all cases) as functions of x (in meters from the grid) on the centreline for the

three different grids (tr = 17, 13, 8.5) and for different values of U∞. All points x are larger than xpeak which is

approximately 1.2m, 1.45m and 1.8m for the girds tr = 17, 13, 8.5 respectively. U∞ is varied between 7m/s and

19m/s. The inserts give the grid and value of U∞ corresponding to each data point.

These results are rather unusual, and it is therefore important to systematically check the degree of homogeneity

and isotropy of the turbulence in the decay region x > xpeak. For the grids used here, Hurst & Vassilicos15 found

values of xpeak equal to about 1.2m, 1.45m and 1.8m for tr = 17, 13 and 8.5 respectively (a surprisingly large range

considering how similar the grids look, see the scaled diagrams in figure 1), and they only checked for homogeneity

at their furthest point of measurement, x = 3.25m. They found a satisfactory degree of crossstream homogeneity

of both the mean flow and the turbulence fluctuations at this location. They also found on the tunnel’s centreline
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a degree of large-sale isotropy (as measured by the ratio u′/v′ of the rms streamwise to rms cross-stream horizontal

turbulence velocities) which, in the decay region x > xpeak, is comparable to that of turbulence generated by active

grids20 ,21. However, they did not check for small-scale isotropy, even though they repeatedly assumed kinetic energy

dissipation rate per unit mass to equal 15νu′2/λ2, which assumes it1. In fact, their observation that the turbulence

far downstream of space-filling fractal square grids decays exponentially is consistent with the constancy of λ during

decay via this relation (in fact via the proportionality − 3
2
U du′2

dx
∼ νu′2/λ2, not requiring any specific value for the

constant of proportionality).

In the following section, we report mean velocity, turbulence intensity and production rate profiles taken at many

streamwise stations in the decay region x > xpeak for all three fractal grids. We also report isotropy tests, including

values of K1 ≡ 2 < ( ∂u
∂x

)2 > / < ( ∂v
∂x

)2 > and coherence spectra C(k1) ≡ |E12(k1)|2

E11(k1)E22(k1)
which measure tendencies

towards or away from small-scale isotropy; E11(k1) is the power spectrum of the streamwise velocity fluctuations in

the streamwise direction, E22(k1) is the power spectrum of the cross-stream horizontal velocity fluctuations in the

streamwise direction and E12(k1) is the Fourier transform of the two-point correlation of u and v.

IV. HOMOGENEITY AND ISOTROPY OF THE DECAYING TURBULENCE

Here we focus our interest on stations with streamwise coordinates x � xpeak where the turbulence is freely

decaying. Homogeneity profiles U(y)/U∞, u′(y)/U∞ and v′(y)/U∞ were measured at up to six x-locations between

xpeak and close to the end of the test section, for five different mean flow velocities U∞ upstream of the grid ranging

between about 7m/s and 19m/s (approximately 7, 10, 13, 16 and 19m/s), and for all three grids. Our results support

the view that the decaying turbulence surrounding the centerline at x & 2xpeak is approximately homogeneous, and

typical such results are presented in figures 3 and 4.

There are two regions of inhomogeneity for all three grids in the decaying region x > xpeak: the first is an

inhomogeneity of the mean flow along x relatively close to xpeak (see curves corresponding to x = 180cm and

x = 210cm in figure 3). However, it was noted by Hurst & Vassilicos15 that for the three grids considered here,

turbulence production by the longitudinal gradient ∂U
∂x

falls to levels below 5% of dissipation far enough from the

grids where the turbulence is freely decaying. Their observation was made only with centerline data and we therefore

confirm it here (see figure 5) with data obtained at various y and x positions in the z = 0 plane. Figure 5 is an

example of the results which we obtained with all three grids for this confirmation. This figure corresponds to the

tr = 17 grid for which xpeak ≈ 1.2m and illustrates how this production term is within or below 5% of dissipation in

the far (x beyond ≈ 2xpeak) central region −Lmax/2 ≤ y ≤ Lmax/2 (note that Lmax/2 ≈ 12cm for this grid). The
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mean flow profiles are approximately the same and homogeneous in this region too (figure 3). In fact, in the specific

case of this tr = 17 grid, the production term plotted in figure 5 is within 8% of dissipation in the region x ≥ 210cm,

−9cm ≤ y ≤ 9cm.

Even at x & 2xpeak there remains a second region of inhomogeneity which can be seen most clearly in the turbulence

intensity profiles of figure 4 and which lies between y ≈ 8cm and y ≈ 14cm in the case of the tr = 17 grid. This same

inhomogeneity region can also be seen in the y-dependence of the production rate term < uv > ∂U
∂y

(see figure 6).

Recalling that Lmax ≈ 24cm and that tmax ranges between about 1.5cm and 2cm, this region seems to correspond to

the location of the largest square on the grids (see figure 1). From results such as figure 6 we find that the turbulence

production rate term < uv > ∂U
∂y

is within about 5% of dissipation in the region −Lmax/4 ≤ y ≤ Lmax/4, x & 2xpeak

and within 15% of dissipation in the region −Lmax/2 ≤ y ≤ Lmax/2, x & 2xpeak. There lies, indeed, our region

of best, and in fact acceptable, homogeneity. This region is larger than multiples of both integral length-scales Lu

(around 5cm) and Lv (around 2.5cm).
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FIG. 3: Mean flow profiles at various streamwise locations between x = 180cm and = 370cm (given in cm in the

insert) downstream from the tr = 17.0 grid (xpeak ≈ 1.2m) for U∞ = 16.2m/s. These profiles settle into a shape

which varies little with x for x larger than about 2xpeak. In the region x & 2xpeak and −10cm ≤ y ≤ 10cm (note

that Lmax/2 ≈ 12cm), these profiles are approximately homogeneous.

To test for local isotropy, we calculate the coherence spectrum of streamwise and cross-stream horizontal fluctuation

velocity components u and v but, following Mydlarski & Warhaft21, we also calculate the coherence spectrum of

(u + v)/
√

2 and (u − v)/
√

2, the horizontal velocity components obtained from a 45o rotation around the vertical.

These coherence spectra have been obtained for all three grids at various x positions larger than xpeak and for various

values of U∞ between about 7m/s and 19m/s, both on the centreline y = 0 and off centerline at y = 3cm and
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in cm in the inserts) downstream from the tr = 17.0 grid (xpeak ≈ 1.2m) for U∞ = 16.2m/s.
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normalised by the local dissipation rate ε at various streamwise locations

between x = 180cm and = 370cm and various cross-stream locations between y = 0cm and y = 18cm (in cm in the

insert) downstream from the tr = 17.0 grid (xpeak ≈ 1.2m) for U∞ = 16.2m/s. We plot u′2 ∂U
∂x

as a function of x for

various values of y 6= 0. For y = 0, we plot the modulus of (u′2 − v′2) ∂U
∂x

because of the grid symmetry with respect

to a 90o rotation about the centerline. The correction v′2 ∂U
∂x

comes from incompressibility22 which implies an effect

of longitudinal mean velocity gradients in the y and/or z directions too.

y = 6cm. We present here figure 7 as a typical example of all these results which conspire to form the view that the

turbulence is isotropic at the small scales though not so isotropic at the large scales. The high values of the coherence

spectrum of (u + v)/
√

2 and (u − v)/
√

2 at small wavenumbers are related to the difference between u′ and v′ which

can be evidenced in figure 4. The ratio u′/v′ does not exceed 1.3 in the decay region with the grids tr = 17 and

tr = 13, and is in fact about 1.2 in most places there for these grids. (Incidentally, as can be seen from figure 2,

Lu/Lv ≈ 2 as expected in isotropic homogeneous turbulence16.) The range of wavenumbers where these coherence

11



0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|  <uv> dU/dy  |  /  < ε >   v   y / cm
 U

inf
 = 16.2 m/s, 180  <  x / cm  <  370

 Grid = tr17

 y / cm

 | 
<

uv
>

 d
U

/d
y 

| /
 <

 ε
 >

 

180
210
280
300
320
370

FIG. 6: Turbulence production rate by ∂U
∂y

normalised by the local dissipation rate ε at various streamwise locations

between x = 180cm and = 370cm and various cross-stream locations between y = 0cm and y = 18cm downstream

from the tr = 17.0 grid (xpeak ≈ 1.2m) for U∞ = 16.2m/s. We plot | < uv > ∂U
∂y

| as a function of y (in cm) for

various values of x (in cm in the insert).

spectra are very close to 0 is the range bounded, on either side, by the integral and Taylor microscales. The values of

the coherence spectra at length-scales below 10η in figure 7 are spurious because the spacing (1mm) of the x-wire’s

two sets of prongs is comparable to these length-scales. Results similar to figure 7 (including the spurious coherence

values at high kη) were obtained by Mydlarski & Warhaft21 in wind tunnel turbulence generated by their active grids

who also detected large scale anisotropy in the coherence spectrum of (u + v)/
√

2 and (u − v)/
√

2, in fact with very

similar coherence values.
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FIG. 7: Coherence spectra of u and v and (marked 45) of (u+v)/
√

2 and (u−v)/
√

2 at various centerline streamxise

locations between x = 180cm and = 370cm downstream from the tr = 17.0 grid for U∞ = 16.2m/s. (η is the

Kolmogorov length-cale.) The insert gives the values of x in cm corresponding to each coherence curve.
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As a second test of local isotropy, directly relevant to our calculation of ε from Taylor’s1 relation ε = 15ν < ( ∂u
∂x

)2 >,

we present values of the derivative ratio K1 ≡ 2 < ( ∂u
∂x

)2 > / < ( ∂v
∂x

)2 > obtained after filtering out length-scales

equal to or smaller than about the spacing of the x-wire’s two sets of prongs. These values have been obtained at

various downstream locations x larger than 2xpeak combined with various cross-stream positions y = 0, 3, 6cm and

for two different values of U∞ (see figure 8). Local isotropy implies K1 = 1, and indeed, K1 is found to hover between

0.95 and 1.1 in all our measurement stations and irrespective of Reynolds number.

We conclude that our results support the view that our decaying (x � xpeak) turbulence in the central region of

the tunnel (i.e. |y| and |z| less than about 9cm around the centreline y = z = 0, an extent probably determined by

the largest square on the grids, see figure 1 and table II) is approximately homogeneous and locally isotropic, though

not perfectly isotropic at the large scales. However, our degree of anisotropy at the large scales is not more severe

than that of the homogeneous decaying turbulence generated by active grids21.
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FIG. 8: Derivative ratio K1 ≡ 2 < ( ∂u
∂x

)2 > / < ( ∂v
∂x

)2 > plotted as a function of local Reynolds number Reλ at

locations (x, y) downstream from the tr = 17 fractal grid such that x is larger than 2xpeak and y = 0, 3, 6cm. Here,

K1 is obtained after filtering out of wavenumbers k1η & 10−1, which are contaminated by cross-wire interactions, see

figure 7. Typical values23,24 of K1 found in various regions of various turbulent flows where local isotropy may be

expected to hold are scattered between about 0.9 and about 2.

V. THE DISSIPATION ANOMALY DOES NOT HOLD IN A TURBULENCE WHICH DECAYS

EXPONENTIALLY WITHOUT SPREADING

A homogeneous isotropic turbulence which decays exponentially, i.e.

u′2 = u′2
peakexp[−(x− xpeak)/lturb] (1)
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whilst its integral length scales Lu, Lv remain constant with x is incompatible with the dissipation anomaly, i.e.

−3

2
U

d

dx
u′2 = ε = Cεu

′3/Lu (2)

where ε is the kinetic energy dissipation rate per unit mass and Cε is a universal constant independent of x.

The fact that Lu, Lv and λ are independent of x, tr and U∞ during decay implies that so are Lu/λ and Lv/λ.

This means, in particular, that Lu/λ and Lv/λ are indepenent of Reλ as confirmed in figure 9 (note, by the way,

the large values of Reλ, up to O(1000), that can be achieved in such a small wind tunnel with these fractal grids).

The constancy of Lu, Lv, λ with x indicates that the turbulence does not spread during decay, which is quite

unusual. What is also unusual is the result reported in figure 9 that the ratio of integral scale to Taylor microscale

is independent of Reλ whereas Kolmogorov scaling2 implies that it grows linearly with Reλ. Using Taylor’s1 relation

ε = 15νu′2/λ2 which holds for isotropic homogeneous turbulence, the independence of Lu/λ on Reλ implies

ε ∼ Re−1
λ u′3/Lu. (3)

which is very different from the Taylor1 scaling (2), also refered to as dissipation anomaly. The validity of ε =

15νu′2/λ2 relies both on large-scale and small-scale isotropy, but small-scale isotropy may be sufficient for the validity

of ε ∼ νu′2/λ2 with a constant prefactor which is not necessarily equal to 15, a statement which is supported by

figure 8. Relation (3) relies on ε ∼ νu′2/λ2.
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FIG. 9: Lu/λ as a function of Reλ from measurements taken at various values of x between xpeak and 3xpeak on the

centreline for different values of U∞ and for all three grids (tr = 17, 13.5, 8.5). The insert gives the grid and value of

U∞ corresponding to each set of data points.

Measurements taken with all three grids on the centreline at x/xpeak between above 1 and about 3, i.e. x/Meff

between above 50 and about 110, confirm the scaling εLu/u′3 ∼ Re−1
λ over nearly one decade up to Reλ values close

to 900. This is clear in figure 10 where we plot Cε ≡ εLu/u′3 as a function of Reλ. In fact, measurements taken with
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all three grids at the same values of x but also off centreline at y positions between -12cm and +12cm (note that

Lmax ≈ 24cm, Lu ≈ 5cm), confirm this result even quantitatively, i.e. Cε ≈ 100/Reλ (see figure 11). This result

suggests an interruption of the combined vortex stretching and strain rate production processes25, interruption in

the sense that these processes are either inhibited or do not produce more strain rate fluctuations with increasing

Reynolds number.
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FIG. 10: Cε = εLu/u′3 as a function of Reλ. Nine different cases are presented corresponding to nine different

combinations of grid (value of tr) and U∞. For each case, measurements are reported from different streamwise

centreline locations x in the decay region between xpeak and 3xpeak. The insert gives the grid and value of U∞

corresponding to each set of data points.
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FIG. 11: Cε = εLu/u′3 as a function of Reλ off centreline. Ten different cases are presented corresponding to ten

different combinations of grid (value of tr), U∞ and y = 3cm or 6cm. For each case, measurements are reported from

different streamwise centreline locations x in the decay region between xpeak and 3xpeak.The insert gives the grid and

values of U∞ and y corresponding to each set of data points.
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VI. A NON-KOLMOGOROV -5/3 TURBULENCE

Considering the absence of a dissipation anomaly (2) in this homogeneous isotropic turbulence, it is suprising that,

at high enough Reλ, the energy spectrum E11(k1) is nevertheless found to be proportional to k
−5/3
1 over about one

decade of streamwise wavenumber k1 for all three grids in the decay region of the turbulence beyond xpeak (see the

examples presented in figures 12 and 13 as well as figures 47 and 48 in Hurst & Vassilicos15).
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FIG. 12: E11(k1)/(u
′2Lu) as a function of k1Lu for the tr = 17 grid at one of our highest values of U∞, U∞ = 16m/s,

and at different values of x between xpeak and 3xpeak.The insert gives the values of x in cm corresponding to each

spectral curve.

Equally surprising is perhaps the fact that we can collapse the spectra of the decaying turbulence at different stages

x of its decay with only one length-scale. In other words, E11(k1, x) = u′2Luf(k1Lu) where all the x-dependence is

absorbed into the x-dependence of u′2 (see figure 12), or equivalently, E11(k1, x) = u′2λf(k1λ) (see figure 13) given

that Lu ∼ λ independently of Reynolds number. Note that Reλ decays with x because u′ decays exponentially with

x whereas λ remains constant. Hence, the collapse in figures 12 and 13 covers different points x where Reλ takes

different values. In fact, this collapse covers the decaying regions of all three flows together, i.e. the function f seems

approximately independent of tr (see figure 14). This a markedly non-Kolmogorov collapse, as it relies on only one

scale for the entire wavenumber range. The possibility that a type of isotropic homogeneous decaying turbulence

might exist with a scaling based on a single length-scale for the entire energy spectrum was suggested by George19 .

What was not predicted by George19 , however, is that such turbulence might be generated by fractal grids. Indeed,

our results indicate that there exist multiscale generators of turbulence which lock the turbulence into a single length-

scale! Yet, the energy spectrum’s -5/3 power-law dependence on k1 is present even though the dissipation anomaly

is not. What we have is a non-Kolmogorov -5/3 turbulence. In that case, what is E11(k1)k
5/3
1 proportional to in the
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spectrum’s power-law range where it is approximately independent of k1?
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FIG. 13: E11(k1)/(u
′2λ) as a function of k1λ for the tr = 17 grid at one of our highest values of U∞, U∞ = 16m/s,

and at different values of x between xpeak and 3xpeak.The insert gives the values of x in cm corresponding to each

spectral curve.

In fact, the George ansatz19, E11(k1, x) = u′2lf(k1l) in terms of an unspecified single length scale l, directly implies

that Lu ∼ l and λ ∼ l, because Lu ∼
R

k−1
1

E11(k1,x)

u′2 dk1 and λ−2 ∼
R

k2
1

E11(k1,x)

u′2 dk1. Hence, L ∼ λ independently

of Reynolds number as indeed observed in our experiment. From ε ∼ νu′2/λ2, the George ansatz also implies

ε ∼ Re−1
λ u′3/Lu which we have also observed. Finally, this ansatz further implies that if a -5/3 power-law range

exists in the energy spectrum, then E11(k1) ∼ (u′3

Lu

)2/3k
−5/3
1 instead of E11(k1) ∼ ε2/3k

−5/3
1 .

VII. CONCLUSIONS

Firstly, it is worth mentioning that our space-filling (i.e. Df = 2) fractal square grids generate high Reynolds

numbers Reλ primarily as a result of increased turbulence intensities which, as shown by Hurst & Vassilicos15 , can be

about three times larger than those generated by classical grids16 ,17,18 of significantly larger blockadge ratio in the

same wind tunnel and with the same upstream mean flow velocity U∞. In fact, one can reach values of Reλ higher

than with classical grids by a factor larger than 3 because the Taylor microscale λ does not decrease with increasing

U∞ as it does in the turbulence generated by classical and active21 grids. Here we reached a value of Reλ close to

1000 in a relatively small tunnel (T = 0.46m) with U∞ = 19m/s and a fractal square grid of blockadge ratio σ = 25%,

which is much smaller than the usual blockadge ratio of classical grids (typically 35%). We therefore expect much

larger values of Reλ with a fractal grid of larger blockadge ratio, particularly because the relation between blockadge

ratio and pressure drop is very non-linear and a small increase in σ can thereby lead to a significant increase in
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FIG. 14: E11(k1)/(u
′2Lu) as a function of k1Lu for all three grids at one of our highest values of U∞, U∞ ≈ 16m/s,

and at the following values of x all larger than xpeak: x = 1.8m, 2.1m, 2.8m, 3.0m, 3.2m and 3.7m for tr = 17 where

xpeak ≈ 1.2m; x = 2.8m, 3.0m, 3.2m and 3.7m for tr = 13 where xpeak ≈ 1.45m; x = 3.2m and 3.7m for tr = 8.5

where xpeak ≈ 1.8m.

turbulence intensity, which is proportional to the square root of the pressure drop17,15.

We have confirmed the result of Hurst & Vassilicos15 that the Taylor microscale λ and the integral length scales

remain approximately constant during decay for all the three fractal square grids which we used here and also

confirmed that the values of these length-scales do not vary from grid to grid. We also showed that these values are

independent of U∞.

The principal result of this work is that space-filling fractal square grids generate a kind of homogeneous isotropic

turbulence which decays locked into a single length-scale l. Specifically, E11(k1) = u′2lf(k1l), where l and the function

f are about the same for all the grids that we tried. From this observed property follow many of the other observed

properties in the decaying region: L/λ = Const independent of x, tr and Reλ; ε ∼ Re−1
λ u′3/Lu; and E11(k1) ∼

(u′3

Lu

)2/3k
−5/3
1 instead of E11(k1) ∼ ε2/3k

−5/3
1 in the observed range of wavenumbers where f(k1l) ∼ (k1l)

−5/3. The

reason for this observed single-length-scale property remains obscure at this stage but may be related to the fact that

the fractal’s self-similar construction may be causing turbulence length-scales to be tied to each other in rigid ratios

and therefore evolve as one.

It is therefore possible to tamper with the deepest of all properties of homogeneous isotropic turbulence: the

dissipation anomaly. This should provide a valuable handle for understanding it because one can learn a lot about

something when one has learned how to change it. Our results pose an immediate challenge to all turbulence

models, theories and phenomenologies, including those of superfluid turbulence where a fractal quantized vortex
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tangle interacts with a normal fluid via a mutual friction force26. In particular, how can the non-Kolmogorov -

5/3 energy spectra observed in fractal-generated turbulence be interpreted? Also, there are many potential new

applications for mixing, combustion, airbrakes and flow control: fractal grids offer the unprecedented possibilities to

decouple length-scale ratios from Reynolds number (figure 9) and turbulence intensities from pressure drop15 all of

which can be separately fractal-tuned to potentially optimally suit many different technologies.
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