Citation

BibTex format

@article{Rane:2016:10.1186/s13075-016-1155-2,
author = {Rane, L and Bull, AMJ},
doi = {10.1186/s13075-016-1155-2},
journal = {Arthritis Research & Therapy},
title = {Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking},
url = {http://dx.doi.org/10.1186/s13075-016-1155-2},
volume = {18},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Background: By altering muscular activation patterns, internal forces acting on the human body during dynamic activity may be manipulated. The magnitude of one of these forces, the medial knee joint reaction force (JRF), is associated with disease progression in patients with early osteoarthritis (OA), suggesting utility in its targeted reduction. Increased activation of gluteus medius has been suggested as a means to achieve this. Methods: Motion capture equipment and forceplate transducers were used to obtain kinematic and kinetic data for 15 healthy subjects during level walking, with and without the application of functional electrical stimulation (FES) to gluteus medius. Musculoskeletal modelling was employed to determine the medial knee JRF during stance phase for each trial. A further computer simulation of increased gluteus medius activation was performed using data from normal walking trials by a manipulation of modelling parameters. Relationships between changes in the medial knee JRF, kinematics and ground reaction force were evaluated. Results: In simulations of increased gluteus medius activity, the total impulse of the medial knee JRF was reduced by 4.2% (p=0.003) compared to control. With real-world application of FES to the muscle, the magnitude of this reduction increased to 12.5% (p<0.001), with significant inter-subject variation. Across subjects, the magnitude of reduction correlated strongly with kinematic (p<0.001) and kinetic (p<0.001) correlates of gluteus medius activity. Conclusions: The results support a major role for gluteus medius in the protection of the knee for patients with OA, establishing the muscle’s central importance to effective therapeutic regimes. FES may be used to achieve increased activation in order to mitigate distal internal loads, and much of the benefit of this increase can be attributed to resulting changes in kinematic parameters and the ground reaction force. The utility of interventions targeting g
AU - Rane,L
AU - Bull,AMJ
DO - 10.1186/s13075-016-1155-2
PY - 2016///
SN - 1478-6354
TI - Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking
T2 - Arthritis Research & Therapy
UR - http://dx.doi.org/10.1186/s13075-016-1155-2
UR - http://hdl.handle.net/10044/1/41649
VL - 18
ER -