Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleLiu M, Prentice IC, Menviel L, et al., 2025,
Correction to: Past rapid warmings as a constraint on greenhouse-gas climate feedbacks (Communications Earth & Environment, (2022), 3, 1, (196), 10.1038/s43247-022-00536-0)
, Communications Earth and Environment, Vol: 6Correction to:Communications Earth & Environmenthttps://doi.org/10.1038/s43247-022-00536-0, published online 30 August 2022 In the version of this article originally published, three estimates of equilibrium climate sensitivity (ECS) derived from different sources were used to convert feedback strength into the unitless measure – gain – on the assumption that these were independent. In fact, these were not independent, and so combining them yields a too-narrow uncertainty range. The authors decided to only use the “very likely” (instead of “likely”) range from IPCC WG1 AR6 and treat it as a 90% confidence interval. Additionally, the gain is not normally distributed but is highly asymmetric, as it is the negative of the ratio of two approximately normally distributed variables, feedback strength (c) and the net feedback parameter (αnet), with a non-zero centre. There is no standard way to derive confidence intervals from standard error for such a variable. Therefore, in the correct version, only the standard error of the gain is provided, instead of giving confidence intervals. Besides, since calculating standard error by the error propagation rule requires the input variables to be at least approximately normally distributed, the gain was calculated directly from the net feedback parameter (αnet, which is assumed to be normally distributed) corresponding to ECS (which is not normally distributed). The changes implemented have no impact on the calculated feedback strengths, but they do have an impact on the estimated gains. Since confidence intervals are no longer provided for the gains, the comparison is focused on the feedback strengths. The authors would like to thank Dr. B. B. Cael from the National Oceanography Centre for bringing this issue to their attention with advice about the choice of ECS and how the very likely range should be interpreted into confidence interval. The manuscript has now been corrected i
-
Journal articleHerzog MK-M, Peters A, Shayya N, et al., 2025,
Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM12 mice reveals pathogen-specific host and microbiota responses.
, Gut Microbes, Vol: 17Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
-
Journal articleMoulick D, Santra SC, Majumdar A, et al., 2025,
Efficacy of Seed Priming Technology in Ameliorating Metals and Metalloids Toxicity in Crops: Prospective and Issues
, REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, Vol: 263, ISSN: 0179-5953 -
Journal articleSchulte to Bühne H, Tobias JA, Durant SM, et al., 2025,
Land use configuration shapes climate change vulnerability of gallery forests in a savannah ecosystem
, Global Ecology and Conservation, Vol: 59, ISSN: 2351-9894Interactions between anthropogenic pressures make it difficult to predict biodiversity change and plan conservation interventions. Climate change is expected to drive widespread ecological change in the tropics over the coming decades, but it is unclear where and when these changes are going to intensify, or reduce, the impacts of additional pressures from human land use. To address this uncertainty, we apply a novel vulnerability assessment framework to show how land use configuration modifies the extent of potential harms arising from climate change to gallery forests, an important vegetation type in tropical savannahs. We highlight how the spatial distribution of climate change (specifically, change in annual rainfall) interacts with the spatial distribution of land use (specifically, cropland), as well as the biophysical context of the study site (the W-Arly-Pendjari transboundary protected area in West Africa), to shape the vulnerability of gallery forests to changes in rainfall in the region. Due to the pathways by which rainfall change and land use interact, vulnerability is especially elevated in core protected areas, warranting particular attention from conservation managers. Overall, our work illustrates how unexpected patterns in potential negative consequences can arise through interactions between pressures on biodiversity, highlighting the importance of considering mechanistic pathways for predicting biodiversity outcomes under multifaceted global environmental change.
-
Journal articleCooke R, Outhwaite CL, Bladon AJ, et al., 2025,
Integrating multiple evidence streams to understand insect biodiversity change.
, Science, Vol: 388Insects dominate animal species diversity yet face many threats from anthropogenic drivers of change. Many features of insect ecology make them a challenging group, and the fragmented state of knowledge compromises our ability to make general statements about their status. In this Review, we discuss the challenges of assessing insect biodiversity change. We describe how multiple lines of evidence-time series, spatial comparisons, experiments, and expert opinion-can be integrated to provide a synthesis overview of how insect biodiversity responds to drivers. Applying this approach will generate testable predictions of insect biodiversity across space, time, and changing drivers. Given the urgency of accelerating human impacts across the environment, this approach could yield a much-needed rapid assessment of insect biodiversity change.
-
Journal articleChristophides GK, 2025,
Malaria vectors with leaky guts.
, Nat Microbiol, Vol: 10, Pages: 817-818 -
Journal articleKeeping TR, ZHOU B, Cai W, et al., 2025,
Present and Future Interannual Variability in Wildfire Occurrence: A Large Ensemble Application to the United States
, Frontiers in Forests and Global Change, ISSN: 2624-893X -
Journal articleBell T, 2025,
Replicating community dynamics reveals how initial composition shapes the functional outcomes of bacterial communities
, Nature Communications, ISSN: 2041-1723 -
Journal articleDias Fernandes L, Hintzen R, Thompson S, et al., 2025,
Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories
, Systematic Biology, ISSN: 1063-5157 -
Journal articleRocco C, Suzuki M, Vilar R, et al., 2025,
Enhancing Zinc Bioavailability in Rice Using the Novel Synthetic Siderophore Ligand Proline-2'-Deoxymugineic Acid (PDMA): Critical Insights from Metal Binding Studies and Geochemical Speciation Modeling.
, J Agric Food ChemBioavailable ligands that bind metals mediate their uptake in plants, leading to the study of artificial ligands as potential fertilizers. Proline-2'-deoxymugineic acid (PDMA) has shown a high affinity for FeIII, enhancing iron uptake in rice and suggesting that it could be used for improving zinc uptake. This work studied chemical solution parameters, i.e., redox potential, ion strength, pH, and ligand/metal concentrations controlling ZnII-PDMA complex formation in rice-producing soils using geochemical speciation modeling. We show that PDMA is generally selective for ZnII in reducing, saline, and alkaline soil solutions. Comparison with a recent micronutrient uptake study in rice suggests that free PDMA should be added in reducing conditions to avoid competition with CuII and FeIII or as the ZnII-PDMA complex at pH below 9. The Zn/M ratios (M = CuII, FeIII) needed to form stable ZnII-PDMA complexes were also identified. This study shows the promise of PDMA as a fertilizer to overcome zinc deficiencies in alkaline and flooded soils.
-
Journal articleJordan S, Frankel G, Mishra V, 2025,
Citrobacter rodentium.
, Trends Microbiol -
Journal articleZHOU B, Cai W, Zhu Z, et al., 2025,
A general model for the seasonal to decadal dynamics of leaf area
, Global Change Biology, ISSN: 1354-1013 -
Journal articleZhang H, Wang H, Wright IJ, et al., 2025,
Thermal acclimation of stem respiration implies a weaker carbon-climate feedback
, Science -
Journal articleBeeby M, Daum B, 2025,
How Does the Archaellum Work?
, Biomolecules, Vol: 15, Pages: 465-465<jats:p>The archaellum is the simplest known molecular propeller. An analogue of bacterial flagella, archaella are long helical tails found in Archaea that are rotated by cell-envelope-embedded rotary motors to exert thrust for cell motility. Despite their simplicity, however, they are less well studied, and how they work remains only partially understood. Here we describe four key aspects of their function: assembly, the transition from assembly to rotation, the mechanics of rotation, and how rotation generates thrust. We outline future research directions that will enhance our understanding of archaellar function.</jats:p>
-
Journal articleYoun T, Kim G, Hariharan P, et al., 2025,
Improved Pendant-Bearing Glucose-Neopentyl Glycols for Membrane Protein Stability.
, Bioconjug ChemMembrane proteins are biologically and pharmaceutically significant, and determining their 3D structures requires a membrane-mimetic system to maintain protein stability. Detergent micelles are widely used as membrane mimetics; however, their dynamic structures often lead to the denaturation and aggregation of encapsulated membrane proteins. To address the limitations of classical detergents in stabilizing membrane proteins, we previously reported a class of glucose-neopentyl glycols (GNGs) and their pendant-bearing versions (P-GNGs), several of which proved more effective than DDM in stabilizing membrane proteins. In this study, we synthesized additional GNG derivatives by varying the lengths of the pendant (P-GNGs), and by introducing hemifluorinated pendants to the GNG scaffold (fluorinated pendant-bearing GNGs or FP-GNGs). The synthetic flexibility of the GNG chemical architecture allowed us to create a diverse range of derivatives, essential for the effective optimization of detergent properties. When tested with two model membrane proteins (a transporter and a G-protein coupled receptor (GPCR)), most of the new (F)P-GNGs demonstrated superior stabilization of these membrane proteins compared to DDM, the original GNG (OGNG)), and a previously developed P-GNG (i.e., GNG-3,14). Notably, several P-GNGs synthesized in this study were as effective as or even better than lauryl maltose neopentyl glycol (LMNG) in stabilizing a human GPCR, beta2 adrenergic receptor (β2AR). Enhanced protein stability was particularly observed for the P-GNGs with a butyl (C4) or pentyl (C5) pendant, indicating that these pendant sizes are optimal for membrane protein stability. The volumes of these pendants appear to minimize the empty spaces in the micelle interiors, thereby enhancing detergent-detergent interactions in micelles complexed with the membrane proteins. Additionally, we identified one FP-GNG that was more efficient at extracting the transporter and more effective at st
-
Journal articleRice AJ, Sword TT, Chengan K, et al., 2025,
Cell-free synthetic biology for natural product biosynthesis and discovery.
, Chem Soc RevNatural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
-
Journal articleDuchêne DA, Chowdhury A-A, Yang J, et al., 2025,
Drivers of avian genomic change revealed by evolutionary rate decomposition.
, NatureModern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
-
Journal articleYang J, Yang C, Lin H-W, et al., 2025,
Elevational constraints on flight efficiency shape global gradients in avian wing morphology.
, Curr BiolWings with an elongated shape or larger surface area are associated with increased flight efficiency in a wide range of animals from insects to birds.1,2,3,4 Inter- and intra-specific variation in these attributes of wing shape is determined by a range of factors-including foraging ecology, migration, and climatic seasonality5,6,7,8-all of which may drive latitudinal gradients in wing morphology.9,10 A separate hypothesis predicts that wing shape should also follow an elevational gradient5,11 because air density declines with altitude,12 altering the aerodynamics of flight and driving the evolution of more efficient wings in high-elevation species to compensate for reduced lift.13,14,15 Although previous analyses have shown a tendency for longer or larger wings at higher elevations, at least locally,16,17,18,19,20 it is difficult to rule out a range of alternative explanations since we currently lack a global synthesis of elevational gradients in wing shape for any taxonomic group. In this study, we use phylogenetic models to explore elevational effects on metrics of wing morphology linked to aerodynamic function in 9,982 bird species while simultaneously controlling for multiple climatic factors and ecological attributes of species. We found that relative wing elongation (hand-wing index) and wing area increase with elevation, even when accounting for latitude, temperature seasonality, body mass, habitat, aerial lifestyle, and altitudinal migration. These results confirm a pervasive elevational gradient in avian wing morphology and suggest that aerodynamic constraints linked to air density, perhaps coupled with oxygen deficiency, contribute to global patterns of trait evolution in flying animals.
-
Journal articleSadaf A, Yun HS, Lee H, et al., 2025,
Multiple Pendants-Bearing Triglucosides for Membrane Protein Studies: Effects of Pendant Length and Number on Micelle Interior Hydration and Protein Stability.
, BiomacromoleculesMembrane proteins play central roles in cell physiology and are the targets of over 50% of FDA-approved drugs. In the present study, we prepared single alkyl-chained triglucosides decorated with multiple pendants, designated multiple pendant-bearing glucosides (MPGs), to enhance membrane protein stability. The new detergents feature two and four pendants of varying size at the hydrophilic-lipophilic interfaces, designated MPG-Ds and MPG-Ts, respectively. When tested with model membrane proteins, including the human adrenergic receptor (β2AR), the tetra-pendant-bearing MPGs (MPG-Ts) demonstrated superior performance compared to the dipendant analogs (MPG-Ds) and the gold standard DDM. All-atom molecular dynamics (MD) simulations results reveal that the four-pendant configuration of this detergent is remarkably effective in excluding water from the hydrophobic micelle interiors compared to the dipendant MPGs and DDM, an unprecedented feature of this new detergent. Our findings provide a novel strategy for designing water-resistant detergents, advancing the field of membrane protein research.
-
Journal articleDodds IL, Watts EC, Schuster M, et al., 2025,
Immunity gene silencing increases transient protein expression in Nicotiana benthamiana.
, Plant Biotechnol J -
Journal articlePotapova N, Whitford H, Hodge J, et al., 2025,
Optimal Weight Loss of Pink Pigeon (Nesoenas mayeri) Eggs During Incubation
, Zoo Biology, ISSN: 0733-3188 -
Journal articleFranks NP, Wisden W, 2025,
Reply to: A curious concept of CNS clearance.
, Nat Neurosci -
Journal articleMengoli G, Sandy P H, Prentice IC, 2025,
The Response of Carbon Uptake to Soil Moisture Stress:Adaptation to Climatic Aridity
, Global Change Biology, ISSN: 1354-1013 -
Journal articleNegi P, Pandey M, Paladi RK, et al., 2025,
Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209.
, Plant Cell EnvironSugarcane (Saccharum officinarum L.) is an economically important long-duration crop which is currently facing concurrent heat waves and soil salinity. The present study evaluates an inducible salt-tolerant sugarcane mutant M4209, developed via radiation-induced mutagenesis of elite check variety Co 86032, under heat (42/30°C; day/night), NaCl (200 mM) or heat + NaCl (HS)-stress conditions. Though heat application significantly improved plant growth and biomass in both genotypes, this beneficial impact was partially diminished in Co 86032 under HS-stress conditions, coinciding with higher Na+ accumulation and lower triacylglycerol levels. Besides, heat broadly equalised the negative impact on NaCl stress in terms of various physiological and biochemical attributes in both the genotypes, indicating its spaciotemporal advantage. The simultaneous up- and downregulation of antagonistic regulators, epidermal patterning factor (EPF) 9 (SoEPF9) and SoEPF2, respectively attributed to the OSD (Open Small Dense) stomatal phenotype in M4209, which resulted into enhanced conductance, transpirational cooling and gaseous influx. This led to improved photoassimilation, which was supported by higher plastidic:nonplastidic lipid ratio, upregulation of SoRCA (Rubisco activase) and better source strength, resulting in overall plant growth enhancement across all the tested stress scenarios. Taken together, the present study emphasised the knowledge-driven harnessing of stomatal-photosynthetic synergy for ensuring global sugarcane productivity, especially under "salt-heat" coupled stress scenarios.
-
Journal articleFarah A, Patel R, Poplawski P, et al., 2025,
A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity.
, Brain, Vol: 148, Pages: 1001-1014Neuronal hyperexcitability is a key driver of persistent pain states, including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1) is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain. Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models. LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system are poorly understood. We show that LGI1 is highly expressed in dorsal root ganglion (DRG) and spinal cord dorsal horn neurons in both mouse and human. Using transgenic mouse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+) or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we found that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared with littermate controls. In LGI1fl/Hoxb8+ mice, we found loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice), and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we found that LGI1 expression was dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury-induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared with controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hype
-
Journal articleAllen ME, Sun Y, Chan CL, et al., 2025,
Thermally Driven Dynamic Behaviors in Polymeric Vesicles.
, SmallStimuli-responsive polymeric vesicles offer a versatile platform for mimicking dynamic cell-like behaviors for synthetic cell applications. In this study, thermally responsive polymeric droplets derived from poly(ethylene oxide)-poly(butylene oxide) (PEO-PBO) polymersomes, aiming to create synthetic cell models that mimic key biological functions are developed. Upon heating, the nanoscale vesicles undergo fusion, transforming into sponge-like microscale droplets enriched with membrane features. By modulating the temperature, these droplets display dynamic properties such as contractility, temperature-induced fusion, and cargo trapping, including small molecules and bacteria, thereby demonstrating their ability to dynamically interface with biological entities. The findings demonstrate the potential of our sponge-like droplets in synthetic cell applications, contributing to the understanding of PEO-PBO polymersomes' unique characteristics, expanding the capabilities of synthetic cell structures, and representing an exciting possibility for advancing soft matter engineering to cell-like behaviors.
-
Journal articleQi M, Taunt H, Bečková M, et al., 2025,
Enhancing the production of chlorophyll f in the cyanobacterium Synechocystis sp. PCC 6803
, Physiologia Plantarum, Vol: 177, ISSN: 0031-9317One potential approach to improve the productivity of cyanobacteria and microalgae is to enhance photosynthetic efficiency by introducing far-red absorbing pigment molecules (such as chlorophylls f and d) into the photosynthetic apparatus to expand the range of photosynthetically active radiation. We have shown previously that expressing the ChlF subunit of Chroococcidiopsis thermalis PCC 7203 in the model cyanobacterium Synechocystis sp. PCC 6803 (Syn6803) is sufficient to drive the production of chlorophyll f (Chl f), but only to low levels (0.24% Chl f/Chl a). By using the strong Pcpc560 promoter and an N-terminal truncated derivative of ChlF, we have been able to increase the yield of Chl f in white light by over 30-fold to about 8.2% Chl f/Chl a, close to the level displayed by far-red photoacclimated C. thermalis 7203. Additionally, we demonstrate that ChlF from Fisherella thermalis PCC 7521, like ChlF from C. thermalis 7203, assembles into a variant of the monomeric photosystem II (PSII) core complex termed the super-rogue PSII complex when expressed in Syn6803. This contrasts with the originally reported formation of a ChlF homodimeric complex in Synechococcus sp. PCC 7002. Overall, our work is an important starting point for mechanistic and structural studies of super-rogue PSII and for incorporating Chl f into the photosynthetic apparatus of Syn6803.
-
Journal articleFerrando-Marco M, Barkoulas M, 2025,
EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans.
, Development, Vol: 152The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
-
Journal articleFieldwalker A, Patel R, Zhao L, et al., 2025,
A Parallel Human and Rat Investigation of the Interaction Between Descending and Spinal Modulatory Mechanisms.
, Eur J Pain, Vol: 29BACKGROUND: Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation. METHODS: Perceptual (quantitative sensory testing) and spinal neuronal (in vivo electrophysiology) assessment was performed in healthy humans and rats respectively upon application of parallel CPM/diffuse noxious inhibitory controls (cuff algometry) and TSP/wind-up (pinprick) paradigms alongside pupillometry. RESULTS: In humans, repetitive pinprick stimulation produced TSP while concurrent application of a noxious conditioning stimulus did not affect pain ratings to a single pinprick stimulus, repetitive stimulation or the wind-up ratio. In rats, repetitive pinprick produced neuronal wind-up while concurrent application of a noxious conditioning stimulus inhibited neuronal responses to a single stimulus and repetitive stimulation but not the wind-up ratio. For pupillometry experiments, dilatory responses did not increase during application of a TSP or CPM paradigm in humans, while reliable rat responses were not obtained. CONCLUSIONS: Under the conditions of our study, spinal amplification mechanisms surpassed descending inhibitory controls while pupillometry did not offer a reliable indicator of endogenous pain modulatory mechanism function. SIGNIFICANCE: In this translational healthy human an
-
Journal articleStark KA, Clegg T, Bernhardt JR, et al., 2025,
Toward a More Dynamic Metabolic Theory of Ecology to Predict Climate Change Effects on Biological Systems.
, Am Nat, Vol: 205, Pages: 285-305AbstractThe metabolic theory of ecology (MTE) aims to link biophysical constraints on individual metabolic rates to the emergence of patterns at the population and ecosystem scales. Because MTE links temperature's kinetic effects on individual metabolism to ecological processes at higher levels of organization, it holds great potential to mechanistically predict how complex ecological systems respond to warming and increased temperature fluctuations under climate change. To scale up from individuals to ecosystems, applications of classical MTE implicitly assume that focusing on steady-state dynamics and averaging temperature responses across individuals and populations adequately capture the dominant attributes of biological systems. However, in the context of climate change, frequent perturbations from steady state and rapid changes in thermal performance curves via plasticity and evolution are almost guaranteed. Here, we explain how some of the assumptions made when applying MTE's simplest canonical expression can lead to blind spots in understanding how temperature change affects biological systems and how this presents an opportunity for formal expansion of the theory. We review existing advances in this direction and provide a decision tree for identifying when dynamic modifications to classical MTE are needed for certain research questions. We conclude with empirical and theoretical challenges to be addressed in a more dynamic MTE for understanding biological change in an increasingly uncertain world.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.
Postgraduate research
Interested in studying a PhD at the Department of Life Sciences? Find out more about postgraduate research opportunties.