Researchers at Imperial College London have programmed human learning behaviour into robots to help humans complete physical tasks.
The robots predicted the movements of their human partners to help improve their performance on computer-related physical tasks.
The researchers believe their findings could be used in the future to help patients rehabilitate from stroke – for example, using robots to deliver physiotherapy.
Academics involved in the study from Imperial College London, France and Japan have previously shown that where two people work together on a physical task, this improves the performance of both participants, for example, while performing a paired dance like the Tango.
To test this they had two human partners move joystick-like devices connected by a virtual elastic band to follow targets on a computer screen (see video) and showed that non-verbal clues from the partner helped each person’s performance.
In the new study, published today in Nature Human Behaviour, the same group of academics used robots to explore how non-verbal cues help to improve performance. They suggested that a human participant will use their sense of touch and proprioception (their sense of position of self and movement) to estimate and predict their partner’s next action and be able to match them, causing both to improve continuously throughout the task.
To test their theory, they paired human participants with robots that were programmed to perform either better or worse at the task than the human’s ability. They used the same joystick task as the aforementioned study to test the theory.
They found that the robots that were ‘better’ than their humans appeared to correct, or compensate for, the human’s movements to make them perform better. The robots that were ‘worse’ than their humans also somehow improved the performance of their human partners.
Lead author Atsushi Takagi, PhD student from Imperial’s Department of Bioengineering, said: “This is the way a human partner would learn to work with a fellow human, as one would get used to the other’s working patterns and become able to predict their moves.”
A robot physiotherapist could complement a human one, taking over when they have to move on to the next patient. Ultimately, this may speed up recovery times for patients.
– Atsushi Takagi
Lead author, Department of Bioengineering
Overall, when using programmed robots as partners, humans performed just as well on the task as they did when paired with other humans.
The human subjects performed worst of all when they attempted the task with no human or robot partner, suggesting, like the previous study, that people learn to complete physical tasks to much higher standards when interacting with a partner.
The authors used Bayesian optimisation, a statistical technique that forms the basis of machine learning, to allow the robot to ‘learn’ the behaviour of the human partner from previous movements and optimally assist their movement.
For example, the robot would quickly learn that particular on-screen movements by the target would cause their particular human to overshoot at the target. In this case, the robot would compensate by undershooting for that same target, hopefully meeting the human’s efforts somewhere in the middle and coming to a more accurate result.
Takagi added: “Although only demonstrated with joysticks and computer programmes so far, we feel that in future, there may be such a thing as a ‘robotic physiotherapist’. Nobody wants to replace a human physiotherapist, but the number of hours they can spend with patients is limited. A robot physiotherapist could complement a human one, taking over when they have to move on to the next patient. Ultimately, this may speed up recovery times for patients.”
Co-author Professor Etienne Burdet, from Imperial’s Department of Bioengineering, added: “Robotic therapists could also act as an extension of their human counterparts. I could imagine a scenario where a number of robots, carrying out treatments with patients in the comfort of their homes, are supervised remotely by a physiotherapist in a hospital location. This could magnify the efforts of a physiotherapist and help more people to get the therapies they need.”
Other research partners include the National Centre for Scientific Research, France, and ATR International in Japan.
“Physically interacting individuals estimate the partner’s goal to enhance their movements” by Atsushi Takagi, Gowrishankar Ganesh, Toshinori Yoshioka, Mitsuo Kawato & Etienne Burdet, published 6 March 2017 in Nature Human Behaviour.
Article text (excluding photos or graphics) © Imperial College London.
Photos and graphics subject to third party copyright used with permission or © Imperial College London.
Reporters
Caroline Brogan
Communications Division
Contact details
Tel: +44 (0)20 7594 3415
Email: caroline.brogan@imperial.ac.uk
Show all stories by this author
Martin Sayers
Communications Division
Contact details
Tel: +44 (0)20 7594 8140
Email: m.sayers@imperial.ac.uk
Show all stories by this author
Leave a comment
Your comment may be published, displaying your name as you provide it, unless you request otherwise. Your contact details will never be published.