Machine learning is the driving engine of modern AI, and an increasingly important research focus at Imperial College.
Eleven papers from Imperial academics have recently been accepted at three of the top machine learning conferences, evidencing the increasing importance and focus of this core research area at Imperial:
International Conference on Machine Learning, 2018
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson, Marc Peter Deisenroth, Ruth Misener
Continual Reinforcement Learning with Complex Synapses
Christos Kaplanis, Murray Shanahan, Claudia Clopath
Conditional Neural Processes
Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo Rezende, Ali Eslami
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi, François-Xavier Briol, Mark Girolami
Stein Points
Wilson Ye Chen, Lester Mackey, Jackson Gorham, François-Xavier Briol, Chris J. Oates
Semi-supervised Learning via Compact Latent Space Clustering
Konstantinos Kamnitsas, Daniel Coelho de Castro, Loic le Folgoc, Ian Walker, Ryutaro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, Aditya Nori
LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration
Gellért Weisz, András György, Csaba Szepesvári
Time Limits in Reinforcement Learning
Fabio Pardo, Arash Tavakoli, Vitaly Levdik, Petar Kormushev
Autoregressive Convolutional Neural Networks for Asynchronous Time Series
Mikolaj Binkowski, Gautier Marti, Philippe Donnat
Fast Bellman Updates for Robust MDPs
Chin Pang Ho, Marek Petrik, Wolfram Wiesemann
Conference on Uncertainty in Artificial Intelligence, 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindor Sæmundsson, Katja Hofmann, Marc Peter Deisenroth
AISTATS 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni, Stefanos Eleftheriadis, James Hensman,
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe, Marc P. Deisenroth
Bayesian Approaches to Distribution Regression
H. Law, D. Sutherland, D. Sejdinovic, S. Flaxman
AdaGeo: Adaptive Geometric Learning for Optimization and Sampling
G. Abbati, A. Tosi, M. Osborne, S. Flaxman
Article text (excluding photos or graphics) © Imperial College London.
Photos and graphics subject to third party copyright used with permission or © Imperial College London.
Reporter
Marc Deisenroth
Department of Computing
Contact details
Email: m.deisenroth@imperial.ac.uk
Show all stories by this author