Human nose too cold for bird flu, says new study
Research shows virus proteins need warmer temperatures to thrive - <em>News Release</em>
Imperial College London News Release
Under strict embargo until
20.00 EDT Thursday 14 May 2009 / 01.00 BST Friday 15 May 2009
Avian influenza viruses do not thrive in humans because the temperature inside a person's nose is too low, according to research published today in the journal PLoS Pathogens. The authors of the study, from Imperial College London and the University of North Carolina, say this may be one of the reasons why bird flu viruses do not cause pandemics in humans easily.
See also:
Related news stories:
- Swine flu: early findings about pandemic potential reported in new study
- A face mask may prevent you getting flu – but only if you wear it
- Lung inflammation from influenza and other infections could be turned off
- One in seven cases of bird flu could be prevented by closing schools in event of pandemic, says study
There are 16 subtypes of avian influenza and some can mutate into forms that can infect humans, by swapping proteins on their surface with proteins from human influenza viruses.
Today's study shows that normal avian influenza viruses do not spread extensively in cells at 32 degrees Celsius, the temperature inside the human nose. The researchers say this is probably because the viruses usually infect the guts of birds, which are warmer, at 40 degrees Celsius. This means that avian flu viruses that have not mutated are less likely to infect people, because the first site of infection in humans is usually the nose. If a normal avian flu virus infected a human nose, the virus would not be able to grow and spread between cells, so it would be less likely to damage cells and cause respiratory illness.
The researchers also found that when they created a mutated human influenza virus by adding a protein from the surface of an avian influenza virus, this mutated virus struggled to thrive at 32 degrees Celsius. This suggests that if a new human influenza strain evolved by adopting proteins from an avian influenza virus, this would need to undergo further changes in order to adapt to the conditions in the human body.
The researchers reached their conclusions by growing cells from the human airway and infecting them with different human and avian influenza viruses, including H5N1, to see how well the viruses grew and spread. The human influenza viruses grew equally well in the cells whether they were maintained at 37 degrees Celsius, our core body temperature, or at 32 degrees Celsius, the temperature of the nose. In contrast, the four avian influenza viruses tested grew well at 37 degrees Celsius but grew very slowly at 32 degrees Celsius.
When the researchers added proteins from an avian influenza virus to a human influenza virus, the human influenza virus also grew slowly and struggled to replicate at 32 degrees Celsius.
As viruses kill the cells they infect, the researchers also measured the extent of cell death in the model. This showed that at 32 degrees Celsius, far fewer cells died as a result of infection with avian influenza compared with human influenza, supporting the idea that the avian virus could not thrive at that temperature.
Professor Wendy Barclay, one of the authors of the study from the Division of Investigative Science at Imperial College London, said: "Bird viruses are out there all the time but they can only cause pandemics when they undergo certain changes. Our study gives vital clues about what kinds of changes would be needed in order for them to mutate and infect humans, potentially helping us to identify which viruses could lead to a pandemic.
"It would be impossible to develop vaccines against all 16 subtypes of avian flu, so we need to prioritise. By studying a range of different viruses in systems like this one we can look for warnings that they are already beginning to make the kinds of genetic changes in nature that mean they could be poised to jump into humans; animal viruses that spread well at low temperatures in these cultures could be more likely to cause the next pandemic than those which are restricted," added Professor Barclay.
The research was funded by the Medical Research Council in the UK and by the NIH in the USA.
-ENDS-
For further information please contact:
Lucy Goodchild
Press Officer
Imperial College London
e-mail: lucy.goodchild@imperial.ac.uk
Telephone: +44 (0)20 7594 6702 or ext. 46702
Out of hours Duty Press Officer: +44 (0)7803 886 248
Notes to editors:
1. "Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways" PLoS Pathogens, Thursday 14 May 2009.
2. About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 12,000 students and 6,000 staff of the highest international quality.
Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.
Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve health in the UK and globally, tackle climate change and develop clean and sustainable sources of energy.
Website:www.imperial.ac.uk
3. The Medical Research Council is dedicated to improving human health through excellent science. It invests on behalf of the UK taxpayer. Its work ranges from molecular level science to public health research, carried out in universities, hospitals and a network of its own units and institutes. The MRC liaises with the Health Departments, the National Health Service and industry to take account of the public's needs. The results have led to some of the most significant discoveries in medical science and benefited the health and wealth of millions of people in the UK and around the world. www.mrc.ac.uk
Article text (excluding photos or graphics) available under an Attribution-NonCommercial-ShareAlike Creative Commons license.
Photos and graphics subject to third party copyright used with permission or © Imperial College London.