Imperial receives major new funding grant from The Leverhulme Trust<em> - News Release</em>
See also:
Related news stories:
Imperial College London news release
For immediate release
Thursday 12 November 2009
Research into designing and building unique 'metamaterials' has received a £4.9 million funding boost from The Leverhulme Trust, it is announced today. Metamaterials can be used for invisibility 'cloaking' devices, sensitive security sensors that can detect tiny quantities of dangerous substances, and flat lenses that can be used to image tiny objects much smaller than the wavelength of light.
The new grant has been made to a team of Imperial College London scientists and engineers, who, in collaboration with scientists at the University of Southampton, will develop new applications for metamaterials that can bend, control and manipulate light and other kinds of electromagnetic waves. Metamaterials is a new, emerging field of science lying at the borders of physics and materials science. The concept relies not on clever chemistry, which is normally used to create new materials, but instead on creating clever patterns on the surface of existing materials, particularly metals.
The new grant is one of two The Leverhulme Trust is awarding for 'embedding emerging disciplines'. The project team is led by two of Imperial College London's Professors: Professor Sir John Pendry, a world-leading physicist and pioneer in the field, who first proposed that metamaterials could be used to build an invisibility 'cloak' in 2006, and Professor Stefan Maier who is a leading experimentalist in the field of plasmonics. Also collaborating in the project is Professor Nikolay Zheludev's team at the University of Southampton.
Sir John says that the new grant will help British universities to develop real-world metamaterial applications based on his theories, including the much-coveted optical invisibility cloak, which would render an object invisible to the human eye:
"We've shown that an optical invisibility cloak is theoretically possible: the big challenge now is to build it. This is just one of the many extremely exciting potential uses of metamaterials that we’ll be exploring with our colleagues at Southampton, thanks to this new grant from The Leverhulme Trust," he explained.
The Leverhulme Trust's grant will provide funding for Imperial College London to recruit three top researchers, including a new Leverhulme Professor to join their world-class teams in physics, materials science and optoelectronics. The University of Southampton will be provided funding to recruit two Leverhulme Advanced Fellows. There will also be opportunities for 10 PhD research students and many postdoctoral researchers to join the group at Imperial College London.
Metamaterials have a carefully designed internal structure that interacts with light and other electromagnetic waves in unique ways, producing effects not seen in nature. For example, scientists can design them so that they control the movement and direction of all kinds of radiation – from visible light to microwaves and terahertz radiation. Being able to control radiation using materials in this way is a relatively new scientific development and opens up a realm of potential applications in diverse fields including medicine, security, imaging, telecommunications and data processing.
In the case of a true cloaking device, the aim is to design a metamaterial cloak that 'grabs' light as it approaches and forces it to flow smoothly around the cloak instead of striking it, in the same way that water in a river flows round a stick, rendering the object concealed beneath it invisible to the human eye.
In imaging, metamaterials could be used to build a 'perfect lens' microscope that would enable scientists to look at objects smaller than the wavelength of light being used – something that has never been achieved using an off- the-shelf optical microscope before.
One of the other areas in which metamaterials could have a big impact is in security technology. The airport scanners of the future could use 'T-ray' radiation to detect very small quantities of poisons and explosives, and advances in metamaterials could make them work.
Professor Stefan Maier from Imperial's Department of Physics, co-leader of the project, explains:
"With metamaterials, we can devise completely new ways of controlling radiation, from visible light all the way down to terahertz radiation and beyond. What we are aiming at are structures that are easy to make, but that can give us a level of control over the flow of radiation thought impossible until now. For example, we can make surfaces that guide terahertz or even radiofrequency waves along them, with their energy highly concentrated right there at the surface, extending only a tiny fraction of the wavelength away from it. This might greatly improve the sensitivity of terahertz sensing devices and allow new ways to harness low-frequency radiation."
The Imperial College London and University of Southampton research teams will also be focusing on developing metamaterials for use in energy harvesting, optoelectronics, fibre optics, as well as bionanotechnology and imaging.
-Ends-
For more information please contact:
Danielle Reeves, Imperial College London press office
Tel: +44 (0)20 7594 2198
Out-of-hours duty press office: +44 (0)7803 886248
Email: Danielle.reeves@imperial.ac.uk
Notes to Editors:
1. About The Leverhulme Trust
The Leverhulme Trust was established in 1925 under the Will of the first Lord Leverhulme. It is one of the largest all-subject providers of research funding in the UK, distributing funds of some £50 million every year. For further information about the schemes that The Leverhulme Trust fund visit their website at www.leverhulme.ac.uk
2. About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality.
Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.
Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve health in th e UK and globally, tackle climate change and develop clean and sustainable sources of energy.
3. About the University of Southampton
The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.
With over 22,000 students, around 5,000 staff, and an annual turnover of more than £370 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.
The University is also home to a number of world-leading research centres, including the National Oceanography Centre, Southampton, the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Web Science Research Initiative, the Centre for the Developmental Origins of Health and Disease and the Southampton Statistical Sciences Research Institute.
Article text (excluding photos or graphics) available under an Attribution-NonCommercial-ShareAlike Creative Commons license.
Photos and graphics subject to third party copyright used with permission or © Imperial College London.