Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleRowe SM, Daines C, Ringshausen FC, et al., 2017,
Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis
, New England Journal of Medicine, Vol: 377, Pages: 2024-2035, ISSN: 0028-4793BACKGROUNDCystic fibrosis is an autosomal recessive disease caused by mutations in the CFTR gene that lead to progressive respiratory decline. Some mutant CFTR proteins show residual function and respond to the CFTR potentiator ivacaftor in vitro, whereas ivacaftor alone does not restore activity to Phe508del mutant CFTR.METHODSWe conducted a randomized, double-blind, placebo-controlled, phase 3, crossover trial to evaluate the efficacy and safety of ivacaftor alone or in combination with tezacaftor, a CFTR corrector, in 248 patients 12 years of age or older who had cystic fibrosis and were heterozygous for the Phe508del mutation and a CFTR mutation associated with residual CFTR function. Patients were randomly assigned to one of six sequences, each involving two 8-week intervention periods separated by an 8-week washout period. They received tezacaftor–ivacaftor, ivacaftor monotherapy, or placebo. The primary end point was the absolute change in the percentage of predicted forced expiratory volume in 1 second (FEV1) from the baseline value to the average of the week 4 and week 8 measurements in each intervention period.RESULTSThe number of analyzed intervention periods was 162 for tezacaftor–ivacaftor, 157 for ivacaftor alone, and 162 for placebo. The least-squares mean difference versus placebo with respect to the absolute change in the percentage of predicted FEV1 was 6.8 percentage points for tezacaftor–ivacaftor and 4.7 percentage points for ivacaftor alone (P<0.001 for both comparisons). Scores on the respiratory domain of the Cystic Fibrosis Questionnaire–Revised, a quality-of-life measure, also significantly favored the active-treatment groups. The incidence of adverse events was similar across intervention groups; most events were mild or moderate in severity, with no discontinuations of the trial regimen due to adverse events for tezacaftor–ivacaftor and few for ivacaftor alone (1% of patients) and placebo (<1%).CONCLUSI
-
Journal articlelambert L, Culley FJ, 2017,
Innate Immunity to Respiratory Infection in Early Life
, Frontiers in Immunology, Vol: 8, ISSN: 1664-3224Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung.
-
Journal articleTripp RA, Power UF, Openshaw PJM, et al., 2017,
Respiratory Syncytial Virus (RSV): Targeting the G Protein Provides a New Approach for an Old Problem.
, Journal of Virology, Vol: 92, ISSN: 1098-5514Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection (LRTI) annually affecting >2 million children in the US <5 years old. In the elderly (>65 years old), RSV results in ∼175,000 hospitalizations annually in the US with worldwide incidence ∼34 million. There is no approved RSV vaccine and treatments are limited. Recently, a Phase 3 trial in the elderly using a recombinant RSV F protein vaccine failed to meet its efficacy objectives, namely prevention of moderate-to-severe RSV-associated LRTI and reduced incidence of acute respiratory disease. Moreover, a recent Phase 3 trial evaluating suptavumab (REGN2222), an antibody to RSV F protein, did not meet its primary endpoint of preventing medically attended RSV infections in pre-term infants. Despite these setbacks, numerous efforts targeting the RSV F protein with vaccines, antibodies, and small molecules continue based on the commercial success of a monoclonal antibody (mAb) against the RSV F protein (palivizumab). As the understanding of RSV biology has improved, the other major coat protein, the RSV G protein, has re-emerged as an alternative target reflecting progress in understanding its roles in infecting bronchial epithelial cells and in altering the host immune response. In mouse models, a high-affinity, strain-independent human mAb to the RSV G protein has shown potent direct antiviral activity combined with the alleviation of virus-induced immune system effects that contribute to disease pathology. This mAb, being prepared for clinical trials, provides a qualitatively new approach to managing RSV for populations not eligible for prophylaxis with palivizumab.
-
Journal articleWen KY, Cameron L, Chappell J, et al., 2017,
A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples.
, ACS Synthetic Biology, Vol: 6, Pages: 2293-2301, ISSN: 2161-5063Synthetic biology designed cell-free biosensors are a promising new tool for the detection of clinically relevant biomarkers in infectious diseases. Here, we report that a modular DNA-encoded biosensor in cell-free protein expression systems can be used to measure a bacterial biomarker of Pseudomonas aeruginosa infection from human sputum samples. By optimizing the cell-free system and sample extraction, we demonstrate that the quorum sensing molecule 3-oxo-C12-HSL in sputum samples from cystic fibrosis lungs can be quantitatively measured at nanomolar levels using our cell-free biosensor system, and is comparable to LC-MS measurements of the same samples. This study further illustrates the potential of modular cell-free biosensors as rapid, low-cost detection assays that can inform clinical practice.
-
Journal articleSheerin D, Openshaw PJ, Pollard AJ, 2017,
Issues in vaccinology: Present challenges and future directions.
, European Journal of Immunology, Vol: 47, Pages: 2017-2025, ISSN: 0014-2980Vaccination is a principal and highly cost-effective means of controlling infectious diseases, providing direct protection against pathogens by conferring long-lasting immunological memory and inducing population-level herd immunity. Despite rapid ongoing progress in vaccinology, there remain many obstacles to the development and deployment of novel or improved vaccines; these include the underlying science of how to induce and sustain appropriate protective immune responses as well as bureaucratic, logistic and socio-political hurdles. The failure to distribute and administer existing vaccines to at-risk communities continues to account for a large proportion of infant mortality worldwide: almost 20 million children do not have access to basic vaccines and several million still die each year as a result. While emerging epidemic or pandemic diseases pose a significant threat to global health and prosperity, there are many infectious diseases which provide a continuous or cyclical burden on healthcare systems which also need to be addressed. Gaps in knowledge of the human immune system stand in the way of developing technologies to overcome individual and pathogenic variation. The challenges in tackling infectious disease and directions that the field of preventive medicine may take to improve the current picture of global health are the focus of this review.
-
Journal articleDonaldson SH, Pilewski JM, Griese M, et al., 2017,
Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR.
, American Journal of Respiratory and Critical Care Medicine, Vol: 197, Pages: 214-224, ISSN: 1073-449XRATIONALE: Tezacaftor (formerly VX-661) is an investigational small molecule that improves processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro, and improves CFTR function alone and in combination with ivacaftor. OBJECTIVES: To evaluate safety and efficacy of tezacaftor monotherapy and tezacaftor/ivacaftor combination therapy in subjects with CF homozygous for F508del or compound heterozygous for F508del and G551D. METHODS: This was a randomized, placebo-controlled, double-blind, multicenter, phase 2 study (NCT01531673). Subjects homozygous for F508del received tezacaftor (10 mg to 150 mg) qday alone or in combination with ivacaftor 150 mg q12h in a dose escalation phase, as well as in a dosage regimen testing phase. Subjects compound heterozygous for F508del and G551D taking physician prescribed ivacaftor received tezacaftor 100 mg qday. MEASUREMENTS AND MAIN RESULTS: Primary endpoints were safety through day 56 and change in sweat chloride from baseline through day 28. Secondary endpoints included change in percent predicted FEV1 (ppFEV1) from baseline through day 28 and pharmacokinetics. The incidence of adverse events was similar across treatment arms. Tezacaftor 100 mg qday/ivacaftor 150 mg q12h resulted in a 6.04 mmol/L decrease in sweat chloride and 3.75 percentage point increase in ppFEV¬1 in subjects homozygous for F508del and a 7.02 mmol/L decrease in sweat chloride and 4.60 percentage point increase in ppFEV¬1 in subjects compound heterozygous for F508del and G551D from baseline through day 28 (P < 0.05 for all). CONCLUSIONS: These results support continued clinical development of tezacaftor 100 mg qday in combination with ivacaftor 150 mg q12h in subjects with CF. Clinical trial registration available at www.clinicaltrials.gov, ID NCT0153167.
-
Journal articleGunawardana NC, Zhao Q, Carayannopoulos LN, et al., 2017,
The effects of house dust mite sublingual immunotherapy tablet on immunologic biomarkers and nasal allergen challenge symptoms.
, Journal of Allergy and Clinical Immunology, Vol: 141, Pages: 785-788.e9, ISSN: 0091-6749 -
Journal articleKarampatzakis A, Song CZ, Allsopp LP, et al., 2017,
Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging.
, NPJ Biofilms Microbiomes, Vol: 3, ISSN: 2055-5008Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live Pseudomonas aeruginosa biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: in smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors.
-
Conference paperCoates M, Ito K, Alton E, et al., 2017,
RSV INFECTION LEADS TO INCREASED BINDING OF <i>PSEUDOMONAS AERUGINOSA</i> TO PHE508DEL CFTR EXPRESSING RESPIRATORY EPITHELIAL CELLS
, Publisher: WILEY, Pages: S375-S375, ISSN: 8755-6863 -
Conference paperPaul-Smith MC, Pytel KM, Gelinas J-F, et al., 2017,
The lung as a factory to produce secreted intrapulmonary and circulatory proteins
, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy / Joint UK-Regenerative-Medicine-Platform Meeting, Publisher: MARY ANN LIEBERT, INC, Pages: A11-A12, ISSN: 1043-0342
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.