BibTex format
@article{Chester:2023:10.1007/jhep01(2023)038,
author = {Chester, SM and Dempsey, R and Pufu, SS},
doi = {10.1007/jhep01(2023)038},
journal = {Journal of High Energy Physics},
title = {Bootstrapping $$ \mathcal(N) $$ = 4 super-Yang-Mills on the conformal manifold},
url = {http://dx.doi.org/10.1007/jhep01(2023)038},
volume = {2023},
year = {2023}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - <jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>We combine supersymmetric localization results with numerical bootstrap techniques to compute upper bounds on the low-lying CFT data of <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{N} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> = 4 super-Yang-Mills theory as a function of the complexified gauge coupling <jats:italic>τ</jats:italic>. In particular, from the stress tensor multiplet four-point function, we extract the scaling dimension of the lowest-lying unprotected scalar operator and its OPE coefficient. While our method can be applied in principle to any gauge group <jats:italic>G</jats:italic>, we focus on <jats:italic>G</jats:italic> = SU(2) and SU(3) for simplicity. At weak coupling, the upper bounds we find are very close to the corresponding four-loop results. We also give preliminary evidence that these upper bounds become small islands under reasonable assumptions.</jats:p>
AU - Chester,SM
AU - Dempsey,R
AU - Pufu,SS
DO - 10.1007/jhep01(2023)038
PY - 2023///
TI - Bootstrapping $$ \mathcal{N} $$ = 4 super-Yang-Mills on the conformal manifold
T2 - Journal of High Energy Physics
UR - http://dx.doi.org/10.1007/jhep01(2023)038
UR - https://doi.org/10.1007/jhep01(2023)038
VL - 2023
ER -