Course participants will be introduced to modern day multivariate data analytics methods through lectures and hands-on workshops. The syllabus is geared towards general concepts on latent variable modelling (LVM) theory and advanced topics on the analysis of specific data scenarios (e.g. batch data, image analysis and chemometrics). LVM is a data-driven modelling technique particularly useful to understand processes where acquired data is: abundant, complex, correlated and noisy. Basic knowledge of statistics, linear algebra and geometry are helpful to fully understand the concepts of this course.
For more information, please click this link.