We use light to develop advanced diagnostic tools, wearable sensors, and microscale robots for studying diseases and enabling minimally invasive treatments.

Head of Group

Dr Alex Thompson

Office B411, Bessemer Building,
South Kensington Campus

⇒ X @_Thompson_Alex

 

 

What we do

We use photonics to develop new technologies for medicine and to study the pathophysiology of disease. This includes new and improved diagnostic tools as well as microscale robotic devices for therapeutic applications. We use a variety of optical techniques for this purpose such as fluorescence, Raman and diffuse reflectance spectroscopy, as well as microscopy and interferometry. We develop devices ranging from wearable sensors and fibre-optic probes for minimally invasive diagnostics through to microscale robots for cellular-scale manipulation and therapy.

Why it is important?

Our research has a number of potential clinical applications including improved monitoring of clinical therapies and interventions (e.g. in inflammatory bowel disease and malnutrition), early diagnosis of infection, and even margin mapping in tumour resection surgery.

How can it benefit patients?

The devices we are developing can potentially provide less invasive and lower cost diagnostics. In turn, this may facilitate patient benefits including earlier diagnosis, earlier identification of relapse (e.g. in therapy response monitoring applications), more widespread deployment and more comfortable patient experiences (e.g. through use of less invasive probes and sensors).

Meet the team

Dr Nilanjan Mandal

Dr Nilanjan Mandal
Research Associate in Optical Sensing for LMICs

Mr Zeyu Wang

Mr Zeyu Wang
Research Postgraduate

Citation

BibTex format

@inproceedings{Kim:2019:10.1117/12.2507961,
author = {Kim, JA and Wales, DJ and Thompson, AJ and Yang, G-Z},
doi = {10.1117/12.2507961},
publisher = {SPIE},
title = {Towards development of fibre-optic surface enhanced Raman spectroscopy probes using 2-photon polymerisation for rapid detection of bacteria},
url = {http://dx.doi.org/10.1117/12.2507961},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - In this study, a variety of direct laser written surface-enhanced Raman spectroscopy (SERS) micro-structures, designed for bacteria detection, are presented. Various SERS micro-structures were designed to achieve both a high density of plasmonic hot spots and a strong probability of interaction between the hot spots and the target bacterial cells. Twophoton polymerization was used for initial fabrication of the polymeric skeletons of the SERS micro-structures, which were then coated with a 50 nm-thick gold layer via e-beam evaporation. The micro-structures were fabricated on glass coverslips and were assessed using a confocal Raman microscope. To this end, Rhodamine 6G was used as an analyte under 785 nm laser illumination. The optimal SERS micro-structures showed approximately 7×103 enhancement in Raman signal (analytical enhancement factor, AEF) at a wavenumber of 600 cm-1. Real-time detection of E. coli in solution was demonstrated using the fabricated SERS platform with low laser powers and a short acquisition time (785 nm, 5 mW, 50 ms).
AU - Kim,JA
AU - Wales,DJ
AU - Thompson,AJ
AU - Yang,G-Z
DO - 10.1117/12.2507961
PB - SPIE
PY - 2019///
SN - 0277-786X
TI - Towards development of fibre-optic surface enhanced Raman spectroscopy probes using 2-photon polymerisation for rapid detection of bacteria
UR - http://dx.doi.org/10.1117/12.2507961
UR - http://hdl.handle.net/10044/1/70994
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location