The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building
South Kensington Campus

+44 (0)20 7594 7046

⇒ X: @fmryb

 

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Meet the team

Citation

BibTex format

@article{Hopkins:2010,
author = {Hopkins, AR and New, AM and Rodriguez, y Baena F and Taylor, M},
journal = {Med Eng Phys},
pages = {14--21},
title = {Finite element analysis of unicompartmental knee arthroplasty},
volume = {32},
year = {2010}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Concerns over accelerated damage to the untreated compartment of the knee following unicompartmental knee arthroplasty (UKA), as well as the relatively poor success rates observed for lateral as opposed to the medial arthroplasty, remain issues for attention. Finite element analysis (FEA) was used to assess changes to the kinematics and potential for cartilage damage across the knee joint in response to the implantation of the Oxford Mobile Bearing UKA. FE models of lateral and medial compartment arthroplasty were developed, in addition to a healthy natural knee model, to gauge changes incurred through the arthroplasty. Varus-valgus misalignments were introduced to the femoral components to simulate surgical inaccuracy or over-correction. Boundary conditions from the Stanmore knee simulator during the stance phase of level gait were used. AP translations of the tibia in the medial UKA models were comparable to the behaviour of the natural knee models (+/- 0.6 mm deviation from pre-operative motion). Following lateral UKA, 4.1 mm additional posterior translation of the tibia was recorded than predicted for the natural knee. IF rotations of the medial UKA models were less consistent with the pre-operative knee model than the lateral UKA models (7.7 degrees vs. 3.6 degrees deviation). Varus misalignment of the femoral prosthesis was more influential than valgus for medial UKA kinematics, whereas in lateral UKA, a valgus misalignment of the femoral prosthesis was most influential on the kinematics. Resection of the cartilage in the medial compartment reduced the overall risk of progressive OA in the knee, whereas removing the cartilage from the lateral compartment, and in particular introducing a valgus femoral misalignment, increased the overall risk of progressive OA in the knee. Based on these results, under the conditions tested herein, both medial and lateral UKA can be said to induce kinematics of the knee which could be considered broadly comparable to those of t
AU - Hopkins,AR
AU - New,AM
AU - Rodriguez,y Baena F
AU - Taylor,M
EP - 21
PY - 2010///
SN - 1350-4533
SP - 14
TI - Finite element analysis of unicompartmental knee arthroplasty
T2 - Med Eng Phys
VL - 32
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location