The Micro-Nano Innovation Lab ("mini lab") investigates multidisciplinary approaches to develop new intelligent sensing and robotic strategies in micro/nano scales.

Head of Group

Dr Jang Ah Kim

B414A Bessemer Building
South Kensington Campus

 

 

What we do

The Micro-Nano Innovation Lab ("mini lab") investigates multidisciplinary approaches to develop new intelligent sensing and robotic strategies in micro/nano scales. We study nanotechnology, light-matter interactions, micro-particle dynamics, microscale fluid dynamics, and bioengineering to reach our goal. The research involves the design and manufacture of micro/nano systems for diagnostics (e.g. infections, cancer, neurodegenerative diseases) and microscopic therapies/surgeries (e.g. localised drug delivery, novel minimally invasive procedures).

Why it is important?

Timely identification of illnesses, less intrusive interventions, and precise/personalised treatments in challenging areas within our bodies, like narrow blood vessels, are essential technologies for improved healthcare management. The foundation for empowering these technologies lies in the development of devices capable of sensitively detecting disruptions in microenvironments that impact normal physiology and of precisely addressing these issues via targeted drug delivery, surgery, etc. at the cellular and molecular levels (micro/nano scales). Understanding the pathophysiology and engineering of the designs and functionalities of such devices accordingly is, thus, vital to enhancing current medical technology. Also, this has the potential to drive the development of advanced medical micro-robots with integrated sensing and therapeutic capabilities, offering new opportunities for future advancements in healthcare.

How can it benefit patients?

Early detection of diseases followed by minimally invasive, targeted and personalised therapy can have evident advantages for patients in terms of prognosis, health management, and economic implications. First, it can reduce excessive physical and biochemical alterations to the microenvironments, e.g., scarring after resection, antimicrobial resistance after antibiotics administration, etc., offering a better prognosis with fewer side effects. Micro/nanodevices can also be engineered to be implantable, enabling long-term health monitoring and treatment. Finally, the localised and precise manner of the technology allows efficient planning of the optimal procedures and accurate dosage, resulting in reduced cost.

Meet the team

Citation

BibTex format

@inproceedings{Kim:2019:10.1117/12.2507961,
author = {Kim, JA and Wales, DJ and Thompson, AJ and Yang, G-Z},
doi = {10.1117/12.2507961},
publisher = {SPIE},
title = {Towards development of fibre-optic surface enhanced Raman spectroscopy probes using 2-photon polymerisation for rapid detection of bacteria},
url = {http://dx.doi.org/10.1117/12.2507961},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - In this study, a variety of direct laser written surface-enhanced Raman spectroscopy (SERS) micro-structures, designed for bacteria detection, are presented. Various SERS micro-structures were designed to achieve both a high density of plasmonic hot spots and a strong probability of interaction between the hot spots and the target bacterial cells. Twophoton polymerization was used for initial fabrication of the polymeric skeletons of the SERS micro-structures, which were then coated with a 50 nm-thick gold layer via e-beam evaporation. The micro-structures were fabricated on glass coverslips and were assessed using a confocal Raman microscope. To this end, Rhodamine 6G was used as an analyte under 785 nm laser illumination. The optimal SERS micro-structures showed approximately 7×103 enhancement in Raman signal (analytical enhancement factor, AEF) at a wavenumber of 600 cm-1. Real-time detection of E. coli in solution was demonstrated using the fabricated SERS platform with low laser powers and a short acquisition time (785 nm, 5 mW, 50 ms).
AU - Kim,JA
AU - Wales,DJ
AU - Thompson,AJ
AU - Yang,G-Z
DO - 10.1117/12.2507961
PB - SPIE
PY - 2019///
SN - 0277-786X
TI - Towards development of fibre-optic surface enhanced Raman spectroscopy probes using 2-photon polymerisation for rapid detection of bacteria
UR - http://dx.doi.org/10.1117/12.2507961
UR - http://hdl.handle.net/10044/1/70994
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location