The Micro-Nano Innovation Lab ("mini lab") investigates multidisciplinary approaches to develop new intelligent sensing and robotic strategies in micro/nano scales.

Head of Group

Dr Jang Ah Kim

B414A Bessemer Building
South Kensington Campus

 

 

What we do

The Micro-Nano Innovation Lab ("mini lab") investigates multidisciplinary approaches to develop new intelligent sensing and robotic strategies in micro/nano scales. We study nanotechnology, light-matter interactions, micro-particle dynamics, microscale fluid dynamics, and bioengineering to reach our goal. The research involves the design and manufacture of micro/nano systems for diagnostics (e.g. infections, cancer, neurodegenerative diseases) and microscopic therapies/surgeries (e.g. localised drug delivery, novel minimally invasive procedures).

Why it is important?

Timely identification of illnesses, less intrusive interventions, and precise/personalised treatments in challenging areas within our bodies, like narrow blood vessels, are essential technologies for improved healthcare management. The foundation for empowering these technologies lies in the development of devices capable of sensitively detecting disruptions in microenvironments that impact normal physiology and of precisely addressing these issues via targeted drug delivery, surgery, etc. at the cellular and molecular levels (micro/nano scales). Understanding the pathophysiology and engineering of the designs and functionalities of such devices accordingly is, thus, vital to enhancing current medical technology. Also, this has the potential to drive the development of advanced medical micro-robots with integrated sensing and therapeutic capabilities, offering new opportunities for future advancements in healthcare.

How can it benefit patients?

Early detection of diseases followed by minimally invasive, targeted and personalised therapy can have evident advantages for patients in terms of prognosis, health management, and economic implications. First, it can reduce excessive physical and biochemical alterations to the microenvironments, e.g., scarring after resection, antimicrobial resistance after antibiotics administration, etc., offering a better prognosis with fewer side effects. Micro/nanodevices can also be engineered to be implantable, enabling long-term health monitoring and treatment. Finally, the localised and precise manner of the technology allows efficient planning of the optimal procedures and accurate dosage, resulting in reduced cost.

Meet the team

Citation

BibTex format

@article{Lim:2016:10.1142/S1793292016501381,
author = {Lim, YT and Kim, T and Kulkarni, A and Kim, D},
doi = {10.1142/S1793292016501381},
journal = {Nano},
title = {High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel},
url = {http://dx.doi.org/10.1142/S1793292016501381},
volume = {11},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - © 2016 World Scientific Publishing Company. The unique properties of graphene quantum dots (GQDs) make them interesting candidate materials for innovative applications. Herein, we report a facile method to synthesize amino-functionalized graphene quantum dots (AF-GQDs) by a hydrothermal reaction. Graphene oxide (GO) was synthesized by Hummer's method where ultra-small GO sheets were obtained by a prolonged oxidation process followed by sonication using an ultrasonic probe. Subsequently, graphene hydrogel (GH) was also obtained by a hydrothermal synthesis method. Proper care was taken during synthesis to avoid contamination from water soluble impurities, which are present in the precursor, GO solution. Following the treatment of GH in ammonia, ultra-small amino-functionalized graphene fragments (AF-GQDs) were formed, which detached from the GH to eventually disperse evenly in the water without agglomerating. This modified synthesis process enables the formation of high-purity AF-GQDs (99.14%) while avoiding time-consuming synthesis procedures. Our finding shows that AF-GQDs with sizes less than 5nm were well dispersed. A strong photoluminescence (PL) emission at ∼410nm with 10% PL quantum yield was also observed. These AF-GQDs can be used in many bio applications in view of their low cytotoxicity and strong fluorescence that can be applied to cell imaging.
AU - Lim,YT
AU - Kim,T
AU - Kulkarni,A
AU - Kim,D
DO - 10.1142/S1793292016501381
PY - 2016///
SN - 1793-2920
TI - High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel
T2 - Nano
UR - http://dx.doi.org/10.1142/S1793292016501381
VL - 11
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location