Soft and flexible robotic systems for affordable healthcare.

Head of Group

Dr Enrico Franco

B414B Bessemer Building
South Kensington Campus

 

 

What we do

Our research investigates fundamental aspects of control of soft and flexible robots for surgery. These include harnessing the intrinsic compliance of soft robots, rejecting disturbances that characterise the surgical environment, and complying with stringent safety requirements. Our ambition is to provide affordable robotic solutions for a range of surgical applications, including endoscopy, percutaneous intervention, and multi-handed surgery.

Why it is important?

Robotics for healthcare is one of the fastest growing segments in the global robotics market. However, conventional surgical robots are unaffordable in low-resource settings. Harnessing the potential of soft and flexible robots can contribute to making surgery safter, more accurate, and more accessible in low-middle income countries. These are pressing needs due to the aging population, and to the growing workforce crisis in the healthcare market.

How can it benefit patients?

Our work aims to improve accuracy, reduce the risk of injury, and reduce discomfort in percutaneous interventions such as biopsy, in diagnostic and interventional endoscopy, and in multi-handed surgery.

Citation

BibTex format

@article{Alian:2023:10.1016/j.tige.2022.11.006,
author = {Alian, A and Zari, E and Wang, Z and Franco, E and Avery, JP and Runciman, M and Lo, B and Rodriguez, y Baena F and Mylonas, G},
doi = {10.1016/j.tige.2022.11.006},
journal = {Techniques and Innovations in Gastrointestinal Endoscopy},
pages = {67--81},
title = {Current engineering developments for robotic systems in flexible endoscopy},
url = {http://dx.doi.org/10.1016/j.tige.2022.11.006},
volume = {25},
year = {2023}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The past four decades have seen an increase in the incidence of early-onset gastrointestinal cancer. Because early-stage cancer detection is vital to reduce mortality rate, mass screening colonoscopy provides the most effective prevention strategy. However, conventional endoscopy is a painful and technically challenging procedure that requires sedation and experienced endoscopists to be performed. To overcome the current limitations, technological innovation is needed in colonoscopy. In recent years, researchers worldwide have worked to enhance the diagnostic and therapeutic capabilities of endoscopes. The new frontier of endoscopic interventions is represented by robotic flexible endoscopy. Among all options, self-propelling soft endoscopes are particularly promising thanks to their dexterity and adaptability to the curvilinear gastrointestinal anatomy. For these devices to replace the standard endoscopes, integration with embedded sensors and advanced surgical navigation technologies must be investigated. In this review, the progress in robotic endoscopy was divided into the fundamental areas of design, sensing, and imaging. The article offers an overview of the most promising advancements on these three topics since 2018. Continuum endoscopes, capsule endoscopes, and add-on endoscopic devices were included, with a focus on fluid-driven, tendon-driven, and magnetic actuation. Sensing methods employed for the shape and force estimation of flexible endoscopes were classified into model- and sensor-based approaches. Finally, some key contributions in molecular imaging technologies, artificial neural networks, and software algorithms are described. Open challenges are discussed to outline a path toward clinical practice for the next generation of endoscopic devices.
AU - Alian,A
AU - Zari,E
AU - Wang,Z
AU - Franco,E
AU - Avery,JP
AU - Runciman,M
AU - Lo,B
AU - Rodriguez,y Baena F
AU - Mylonas,G
DO - 10.1016/j.tige.2022.11.006
EP - 81
PY - 2023///
SN - 2590-0307
SP - 67
TI - Current engineering developments for robotic systems in flexible endoscopy
T2 - Techniques and Innovations in Gastrointestinal Endoscopy
UR - http://dx.doi.org/10.1016/j.tige.2022.11.006
UR - http://hdl.handle.net/10044/1/103671
VL - 25
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location