Key info


Date:
25 September 2020

Authors:
Alexandra B Hogan, Peter Winskill, Oliver J Watson, Patrick GT Walker, Charles Whittaker, Marc Baguelin1, David Haw, Alessandra Løchen, Katy A M Gaythorpe,Imperial College COVID-19 Response Team, Farzana Muhib, Peter Smith, Katharina Hauck, Neil M Ferguson, Azra C Ghani1

1Correspondence:
a.ghani@imperial.ac.uk

Imperial College COVID-19 Response Team
Kylie Ainslie, Samir Bhatt, Adhiratha Boonyasiri, Olivia Boyd, Nicholas Brazeau, Lorenzo Cattarino, Giovanni Charles, Laura V Cooper, Helen Coupland, Zulma Cucunuba, Gina Cuomo-Dannenburg, Christl A Donnelly, Ilaria Dorigatti, Oliver D Eales, Sabine van Elsland, Fabricia Ferreira Do Nascimento, Richard FitzJohn, Seth Flaxman, Will Green, Timothy Hallett, Arran Hamlet, Wes Hinsley, Natsuko Imai, Elita Jauneikaite, Ben Jeffrey, Edward Knock, Daniel Laydon, John Lees, Thomas Mellan, Swapnil Mishra, Gemma Nedjati-Gilani, Pierre Nouvellet, Alison Ower, Kris V Parag, Manon Ragonnet-Cronin, Igor Siveroni, Janetta Skarp, Hayley A Thompson, H. Juliette T. Unwin, Robert Verity, Michaela Vollmer, Erik Volz, Caroline Walters, Haowei Wang, Yuanrong Wang, Lilith K Whittles, Xiaoyue Xi


 

Download the full PDF for Report 33 Download the full PDF for Report 33 supplement See all reports

WHO Collaborating Centre for Infectious Disease Modelling, MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Business School, Imperial College London, PATH

Now published in Vaccine; 21-05-2021, doi: https://doi.org/10.1016/j.vaccine.2021.04.002

Summary

Several SARS-CoV-2 vaccine candidates are now in late-stage trials, with efficacy and safety results expected by the end of 2020. Even under optimistic scenarios for manufacture and delivery, the doses available in 2021 are likely to be limited. Here we identify optimal vaccine allocation strategies within and between countries to maximise health (avert deaths) under constraints on dose supply. We extended an existing mathematical model of SARS-CoV-2 transmission across different country settings to model the public health impact of potential vaccines, using a range of target product profiles developed by the World Health Organization. We show that as supply increases, vaccines that reduce or block infection – and thus transmission – in addition to preventing disease have a greater impact than those that prevent disease alone, due to the indirect protection provided to high-risk groups. We further demonstrate that the health impact of vaccination will depend on the cumulative infection incidence in the population when vaccination begins, the duration of any naturally acquired immunity, the likely trajectory of the epidemic in 2021 and the level of healthcare available to effectively treat those with disease. Within a country, we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly and other high-risk groups. However, if a larger supply is available, the optimal strategy switches to targeting key transmitters (i.e. the working age population and potentially children) to indirectly protect the elderly and vulnerable. Given the likely global dose supply in 2021 (2 billion doses with a two-dose vaccine), we find that a strategy in which doses are allocated to countries in proportion to their population size is close to optimal in averting deaths. Such a strategy also aligns with the ethical principles agreed in pandemic preparedness planning.

Translations

Contact us


For any enquiries related to the MRC Centre please contact:

Scientific Manager
Susannah Fisher
mrc.gida@imperial.ac.uk

External Relationships and Communications Manager
Dr Sabine van Elsland
s.van-elsland@imperial.ac.uk