Fig. Aerostatic platform
Aerostatic platforms are used to move easily (even manually) heavy loads over a short distance across a smooth surface. An aerostatic platform is a hovercraft the air cushion of which is bounded by inflatable rubber balloon so that the gap between the rubber and the floor can be as small as 0.1mm. Such a hovercraft requires very little air to fly. Under certain conditions aerostatic platforms begin to jump up and down together with the load. This instability might occur subcritically, that is in response to a finite perturbation. Within a certain class of models it turns out to be possible to reduce the problem of nonlinear stability of an aerostatic platform to the easier problem of its linear stability over a range of regimes.
More information:
Try it, it is easy and it is fun!
Oberwolfach Workshop 2431 - Polynomial Optimization for Nonlinear Dynamics: Theory, Algorithms, and Applicationsat the Mathematisches Forschungsinstitut Oberwolfach, Germany 28 July - 2 August 2024.
Studying fluid flows with auxiliary functions and LMIsat the IFAC World Congress, held in Yokohama, Japan on 8-14th July 2023.
Bounding time averages: a road to solving the problem of turbulenceat Institut de Mathématiques de Bordeaux, Bordeaux, May 4, 2023.
Bounding time averagesand
How quasi-steady is the modulation of near-wall turbulence by large-scale structures?(with Yunjiu Yang).
Auxiliary functionals: a path to solving the problem of turbulenceat The Seminar in the Analysis and Methods of PDE (SIAM PDE) on March 4, 2021. Links to the abstract and the video.
Accelerating time averagingat 73rd Annual Meeting of the APS Division of Fluid Dynamics, November 22, 2020: abstract and video.
Accelerating time averaging using auxiliary functionsat the Aerodynamics and Flight Mechanics group seminar, University of Southampton, on 6 February 2019
Coherent structures in wall-bounded turbulence: new directions in a classic problem, London, August 29-31, 2018, with a talk
Large-scale motions for the QSQH theory(with Chi Zhang).
Questions concerning quasi-steady mechanism of the Reynolds number, pressure gradient, and geometry effect on drag reductionat the Workshop on Active Drag Reduction, Aachen, Germany, 15-16 March 2018.
The problem of turbulence: bounding solutions to equations of fluid mechanics & other dynamical systems, with Giovanni Fantuzzi providing exercise sessions, at The 6th Bremen Winter School
Dynamical systems and turbulence, March 12-16, 2018.
Sergei Chernyshenko