Fig. A sketch and a photograph of a centrifgure with hydraulic drive.
Centrifuges are used for separating solid particles from the fluid of different density, for example for cleaning oil in car engines. High rotation speed of the rotor creates large centrifugal forces, pulling heavier particles to the side of the rotor, where they stay until removed during a regular maintenance, or from where they are removed continuously by a special mechanism. Frequently, the rotor of the centrifuge is driven by a separate electric motor, or by a shaft from the car engine. A sketch of a centrifuge with a hydraulic drive is shown in Figure. In such a centrifuge the fluid is pumped into the rotor and exits through the nozzles. The nozzle thrust creates torque driving the centrifuge, thus eliminating the need for a separate motor. Notice the nozzles on the photograph of the centrifuge.
A centrifuge with hydraulic drive is an interesting object from the fluid dynamics point of view. To achieve high efficiency, the hydraulic resistance of the inner, quickly rotating with the rotor, passages should be minimised. At the same time the fluid should pass through an area far away from the axis of rotation, where the centrifugal force is greater. Nozzle efficiency is crucial. The air in the gap between the rotor and the centrifuge cover also moves, and the air friction makes a significant contribution. Jets from the nozzles might break down into a fine spray and hit the rotor, slowing it down. Optimizing such a device is quite a challenging task, but this can, indeed, be done.
Try it, it is easy and it is fun!
Oberwolfach Workshop 2431 - Polynomial Optimization for Nonlinear Dynamics: Theory, Algorithms, and Applicationsat the Mathematisches Forschungsinstitut Oberwolfach, Germany 28 July - 2 August 2024.
Studying fluid flows with auxiliary functions and LMIsat the IFAC World Congress, held in Yokohama, Japan on 8-14th July 2023.
Bounding time averages: a road to solving the problem of turbulenceat Institut de Mathématiques de Bordeaux, Bordeaux, May 4, 2023.
Bounding time averagesand
How quasi-steady is the modulation of near-wall turbulence by large-scale structures?(with Yunjiu Yang).
Auxiliary functionals: a path to solving the problem of turbulenceat The Seminar in the Analysis and Methods of PDE (SIAM PDE) on March 4, 2021. Links to the abstract and the video.
Accelerating time averagingat 73rd Annual Meeting of the APS Division of Fluid Dynamics, November 22, 2020: abstract and video.
Accelerating time averaging using auxiliary functionsat the Aerodynamics and Flight Mechanics group seminar, University of Southampton, on 6 February 2019
Coherent structures in wall-bounded turbulence: new directions in a classic problem, London, August 29-31, 2018, with a talk
Large-scale motions for the QSQH theory(with Chi Zhang).
Questions concerning quasi-steady mechanism of the Reynolds number, pressure gradient, and geometry effect on drag reductionat the Workshop on Active Drag Reduction, Aachen, Germany, 15-16 March 2018.
The problem of turbulence: bounding solutions to equations of fluid mechanics & other dynamical systems, with Giovanni Fantuzzi providing exercise sessions, at The 6th Bremen Winter School
Dynamical systems and turbulence, March 12-16, 2018.
Sergei Chernyshenko