The Aeroelasticity research team is led by Dr Sina Stapelfeldt.

Aeroelastic phenomena are responsible for a significant number of aircraft engine distress events. They account for a large proportion of engine development costs and severely restrict the design and operating space, imposing limitations on efficiency and performance. Despite their importance, some of these phenomena are poorly understood because the underlying intricate fluid dynamics are further complicated by deforming structures.

The group’s research uses computational fluid dynamics (CFD) to predict and improve our understanding of a range of aeroelastic phenomena in aircraft engines, ranging from flutter and forced response to compressor stall and surge. This involves the development of advanced computational methods and the application of these to uncover underlying physical mechanisms.

 

PhD Projects

Post-doctoral Research Projects